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Abstract—We describe a fully automated ultrasound analysis
system that tracks and identifies the common carotid artery (CCA)
and the internal jugular vein (IJV). Our goal is to prevent inadver-
tent damage to the CCA when targeting the IJV for catheterization.
The automated system starts by identifying and fitting ellipses to
all the regions that look like major arteries or veins throughout
each B-mode ultrasound image frame. The spokes ellipse algo-
rithm described in this paper tracks these putative vessels and cal-
culates their characteristics, which are then weighted and summed
to identify the vessels. The optimum subset of characteristics and
their weights were determined from a training set of 38 subjects,
whose necks were scanned with a portable 10 MHz ultrasound sys-
tem at 10 frames per second. Stepwise linear discriminant analysis
(LDA) narrowed the characteristics to the five that best distinguish
between the CCA and IJV. A paired version of Fisher’s LDA was
used to calculate the weights for each of the five parameters. Leave-
one-out validation studies showed that the system could track and
identify the CCA and IJV with 100% accuracy in this dataset.

Index Terms—Biomedical acoustic imaging, biomedical engi-
neering, biomedical image processing, blood vessels.

I. INTRODUCTION

THE COMMON carotid artery (CCA) and the internal jugu-
lar vein (IJV) run side by side in the neck, one pair on the

left and one on the right. The CCA carries oxygenated blood up
to the head while the IJV drains deoxygenated blood down to
the heart. The right IJV is a common entry site for intravascular
procedures such as central catheter line placement, hemody-
namic measurement, myocardial biopsy, and cardiac ablation.
The right IJV is chosen because its path to the right atrium is
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straighter than that from the left IJV. Inadvertent CCA puncture
while targeting the IJV is not uncommon (reported incidence of
2%–8% [1] [2]) and usually results in localized hematoma. The
hematoma may enlarge rapidly if the patient is coagulopathic,
or if a large puncture wound is produced by the introduction of
the sheath itself into the CCA. Other potential negative conse-
quences of CCA puncture include airway obstruction [3], pseu-
doaneurysm [4], arterio–venous fistula formation [5], retrograde
aortic dissection [6], and cerebrovascular accident [7] with po-
tentially fatal consequences.

The introduction of B-mode ultrasound to guide IJV access
has decreased the arterial puncture incidence [8]. The direction
and pattern of flow from color Doppler can further help distin-
guish arteries from veins. However, doctors generally hold the
ultrasound transducer roughly perpendicular to the target vessels
during vascular access, whereupon slight angular deviation may
reverse the perceived direction of flow, making identification of
the vessels ambiguous. Thus, color Doppler is generally only
used during preoperative evaluation and not during the actual
procedure.

We believe a fully automated vessel identification system op-
erating in real time during the procedure could decrease the in-
cidence of inadvertent CCA puncture and facilitate cannulation.
We have developed such a system, in the form of software to be
used in conjunction with a new method of ultrasound display,
the sonic flashlight [9], which employs a half-silvered mirror to
reflect the image directly within the patient. By analyzing the
properties of the tracked objects, it should be possible to auto-
matically classify and graphically mark each as an artery, vein,
or other tissue type, with the markings being displayed by the
sonic flashlight superimposed on the ultrasound image floating
within the patient. Such markings could obviously be used with
conventional ultrasound displays as well. In either case, it could
help prevent the operator, especially the relative novice, from
accidentally puncturing the CCA.

Due to the presence of speckle, the dependence of backscatter
on beam orientation, and the attenuating effects of intervening
structures, ultrasound is among the most difficult modalities
for automated image analysis. A number of researchers have
developed ultrasound segmentation techniques. The majority
of effort has focused on the following clinical applications:
echocardiography, breast ultrasound, transrectal ultrasound, in-
travascular ultrasound (IVUS), and ultrasound in obstetrics and
gynecology [10]. Segmentation of the carotid artery using IVUS
has been extensively studied [10]. These images are acquired
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from within the vessel using a catheter-based high-frequency
(∼40 MHz) ultrasound probe, and provide an inherent central
location within the lumen. In terms of image analysis, therefore,
they are fundamentally different from our application. Transder-
mal ultrasound scans are typically performed at ∼8–10 MHz,
and the location of the center of the lumen is unknown.

For transdermal vascular scans, Mao et al. used deformable
models that incorporate knowledge about the shape and loca-
tion of the desired feature [11]. In general, deformable models
require careful initialization and tuning of parameters, and are
difficult to implement in real time. A less computationally in-
tensive algorithm is presented in [12] for the evaluation of deep
vein thrombosis (DVT). A modified Star–Kalman algorithm,
based on an elliptical model, is used to determine vessel con-
tours. It includes a temporal Kalman filter to provide robust
tracking of the vessel lumen. This is important for the DVT
application, in which the entire length of a human leg is often
scanned. For our clinical application, jugular vein cannulation,
the ultrasound probe is held relatively stationary while a nee-
dle is guided into the vein. Thus, our tracking requirements are
primarily in the temporal domain and need to deal mostly with
changes in vessel size and shape, rather than location. Therefore,
our seed points can be reliably determined simply by using the
center of mass of the vessel as segmented in the previous time
frame. Methods to identify anatomical targets in ultrasound im-
ages other than vascular structures have also been investigated.
Drukker et al. researched the use of a radial gradient index filter
to automatically detect lesions in breast ultrasound [13]. Ladak
et al. developed automatic methods to segment the boundaries
of the prostate [14]. Algorithms also exist for automatically
locating instruments such as biopsy needles in an ultrasound
image [15]. This list is not meant to be all-inclusive. Many re-
searchers have applied image analysis to clinical ultrasound,
but to our knowledge, our system is the first to automatically
identify and differentiate in real time between the CCA and
IJV.

We have approached the problem of identifying the CCA and
IJV by creating a system that will simultaneously track mul-
tiple vessels under limited motion and provide statistical data
for their identification. We scanned healthy subjects to deter-
mine statistically reliable vessel parameters and corresponding
weights to optimally classify the vessels. The system operates in
real time, enabling its potential introduction into ongoing clini-
cal testing of the sonic flashlight [16] [17]. This paper expands
upon preliminary results presented at Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI) 2006 [18]
and describes the final system in detail.

We begin in Section II-A and II-B by introducing the spokes
ellipse algorithm [18] for segmentation, tracking, and calcu-
lating the cross-sectional elliptical radii of each vessel. In
Section II-C, we introduce the features that can potentially dis-
tinguish CCA from IJV. In Section III, we describe our dataset,
methods to validate the data, and methods to calculate the vari-
ables described in Section II-C. In Section IV, we discuss the
results and relate them to known vascular physiology. Finally, in
Section V, we review our conclusions and directions for future
work.

Fig. 1. Spokes ellipse algorithm applied to the IJV (top) and the CCA (bottom).
Spokes grow until they reach a boundary (white dots) or a preset maximum
length (lines without a dot). Ellipses are fit to the dots for each vessel. Algorithm
runs in real time.

II. BACKGROUND

A. Spokes Ellipse Algorithm

We have developed an efficient algorithm that tracks blood
vessels in real time and simultaneously calculates their elliptical
radii and cross-sectional area in each frame to be used for vessel
classification.

The spokes ellipse algorithm outlines and tracks the vessel
walls in a sequence of frames (Fig. 1), given an initialization
process described in the next section. Much like the aforemen-
tioned “Star” algorithm, the spokes ellipse algorithm initially
draws 30 radial lines emanating from a seed point. An intensity-
threshold-based boundary detection algorithm searches for the
most likely boundary along each spoke. Since the intensities
of vascular walls are different at different depths, we use the
80th percentile intensity of all pixels at the same depth, for each
frame, as the vascular boundary threshold for that particular
depth. This threshold was determined by sampling pixels just
outside the vessels and those just inside the vessels to determine
the optimal cutoff value (data not shown). Spokes whose lengths
are not within one standard deviation of the mean are eliminated.
From the remaining spokes, an ellipse is fitted by a least squares
method [10]. The cross-sectional area of the vessel is approx-
imated by the area of the ellipse. The center of the ellipse is
then used as the seed point for the spokes in the next frame. By
recalculating the center of the vessel and its boundaries in each
frame, the vessel can be tracked in real time, although sudden
movement of the transducer may cause the tracking to be lost.
This algorithm is run at least twice in each frame, since there
are two vessels to track: the CCA and the IJV.

B. Spokes Ellipse Initialization

We explored three methods for initial identification of the
blood vessels in the first frame: 1) manual initialization by an
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expert; 2) automatic initialization with color Doppler; and 3)
brute force testing of each pixel as a seed point for subsequent
tracking and vessel identification. We describe them here, com-
paring their relative advantages and disadvantages.

1) An expert can manually initialize the spokes ellipse algo-
rithm by tapping the CCA and IJV on a touch-sensitive
screen to mark the approximate center of these two ves-
sels. This is inherently a reliable process, given the relative
ease with which most experts can identify large vessels in
an ultrasound image. In a clinical setting, however, it is
desirable not to require such a manual process, especially
since it might have to be repeated each time tracking is
lost.

2) Color Doppler, which detects blood flow, can be used to
automatically initialize the ellipses. Although, as already
mentioned, color Doppler may not reliably differentiate
artery from vein when the transducer is perpendicular to
the vessels, it does provide evidence of nonzero flow mag-
nitude. However, due to the proximity of the CCA and IJV,
color Doppler often cannot separate the two vessels into
distinct clusters from which seed points can be derived.

3) The third option we explored to seed the tracking algo-
rithm is a brute force approach in which the entire image
(512 × 512 pixels) is blanketed with ellipse seed points
spaced 10 pixels (horizontally and vertically) apart. Each
ellipse then grows according to the spokes ellipse algo-
rithm. Ellipses that do not fit properly (i.e., those with rms
fitting error >0.07) are eliminated until only two prop-
erly fitting adjacent ellipses remain. Option 3) was used
in the study described here, because it is very reliable and
does not depend critically on transducer angle. It is also
very fast, taking only a fraction of a second. In general,
automated seeding of the CCA and IJV in this area of the
neck (just above the clavicle) is not difficult, since there
are rarely other ambiguous structures that can confuse our
system.

C. Potential Features for Vessel Classification

A priori, we generated a set of 26 features that could be used
for vessel classification. Table I lists these features along with
their corresponding confidence intervals and p-values from the
current data. The measures that form the basis for the feature
set and the rationale for considering them are described here.

1) Ellipse Area: Since the blood volume is more dependent
on gravity in the vein than in the artery, having the subject lie
supine should increase the blood volume in the IJV.

2) Eccentricity: Being more compliant, the IJV may show a
greater degree of eccentricity in elliptical shape, especially con-
sidering the pressure being applied by the ultrasound transducer.

3) Number of Spokes Retained and Ellipse Fitting Error: Since
the spokes that grow beyond a boundary gap are eliminated, the
number of spokes used and the ellipse fitting error are direct re-
flections of the completeness of the vascular boundary detected
by ultrasound.

4) Depth of Ellipse Centers: Depth is a potentially important
feature to distinguish the two vessels since the CCA generally

TABLE I
95% CONFIDENCE INTERVAL AND p-VALUE FOR 26 PARAMETERS, DERIVED

SEPARATELY FROM THE CCA AND IJV DATA

lies deeper beneath the skin than the IJV. However, the relative
locations of two vessels in the image depend on how the trans-
ducer is oriented and what portion of the neck is being scanned.
One study has shown the IJV to be positioned completely lateral
to the CCA in 8.7% of clinical scans [19]. Actually, doctors often
prefer such lateral placement of the IJV because CCA puncture
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is less likely when it is not directly under the IJV. This reduces
the potential usefulness of depth in vessel identification.

5) Properties of the Fourier Transform—Heart Rate, Res-
piratory Rate: Since the spokes ellipse algorithm allows for
collection of information over several frames, we can com-
pute temporal features of the vessels—frequencies and phase
differences. The hemodynamics of the CCA and IJV differ in
a consistent manner. The CCA experiences the highest blood
pressure when the left ventricle contracts, causing a surge of
blood to flow into the CCA through the aorta. The IJV experi-
ences the highest blood pressure when the right atrium contracts,
regurgitating blood to the IJV through the superior vena cava.
Because the atria and ventricles do not contract simultaneously,
the pulsations of the CCA and IJV are consistently out of phase
in a given cardiac cycle.

By taking the Fourier transform of the temporal series of
cross-sectional areas of each vessel, we can obtain a magnitude
and phase at each frequency. The heart rate can be determined
by identifying the frequency with the greatest magnitude in the
physiologic range of 40–150 cycles per minute (cpm). Similarly,
the respiratory rate can be determined as the frequency with
greatest magnitude in the range 10–30 cpm. Recall that the
Fourier transform X(ω) of a signal x(t) can be represented in
phasor notation as

X(ω) = r(ω) ejθ(ω ) (1)

where r(ω) ≥ 0 is the magnitude and −π < θ(ω) ≤ π is the
phase in the complex plane. Denoting the Fourier transforms of
the IJV and CCA cross-sectional areas, respectively, as J(ω)
and C(ω), the phase difference Q(ω) between the CCA and
IJV can be found from their ratio, normalized by their relative
magnitudes

Q (ω) =
rJ (ω)
rC (ω)

C(ω)
J(ω)

= ej (θC (ω )−θJ (ω )) . (2)

This yields a unit phasor, the phase of which is the difference
between the phases of the CCA and IJV at frequency ω

∆θ (ω) = θC (ω) − θJ (ω) . (3)

Thus,

∆θ (ω) = arctan
Im {Q (ω)}
Re {Q (ω)} . (4)

Since we have a sampled Fourier transform, individual phase
samples may or may not represent a consistent phase difference,
so we convolve over a narrow band in the frequency domain with
a normalized Gaussian smoothing filter G (ω, σ) as follows:

∆θ̃ (ω) = arctan
Im {G (ω, σ) ∗ Q (ω)}
Re {G (ω, σ) ∗ Q (ω)} (5)

with σ set empirically to three samples or 2.5 cpm in the Fourier
frequency domain, given a frame rate of 10 frames per second
(fps) over 512 samples. Note that convolution can be applied to
the complex number Q(ω) by applying it independently to the
real and imaginary parts. A measure of phase consistency for
this smoothed phase difference is

α (ω) = |G (ω, σ) ∗ Q (ω)| . (6)

Fig. 2. Similarity between (b) the area of the expert tracing and (a) the ellipse
fit to the expert tracing as well as (c) the algorithm defined ellipse.

Random phase differences in individual samples of the
Fourier transform due to noise tend to cancel upon convolu-
tion with the Gaussian, yielding a value of α(ω) near 0, whereas
a consistent phase shift over consecutive frequency samples of
the Fourier transform yields a value near 1.

III. METHOD

A. Data Acquisition

We recruited 42 healthy volunteers ages 20–51. The vol-
unteers were asked to lie supine with their heads turned to
the left. The right sides of their necks were scanned by a
radiologist-trained senior medical student, hereafter referred
to as the “expert.” A commercially available scanner with a
10-MHz US probe (Terason 2000; Teratech, Burlington, MA)
was used in the standard manner, using the standard vascular
preset to adjust for intensity attenuation. A series of uncom-
pressed, 512 × 512 pixel, digitized images, with pixel dimen-
sions of 0.1 × 0.1 mm2 , was recorded by the ultrasound scanner
at 10 fps for 120 s. Heart rates were measured by the expert us-
ing palpation before and after the scan, and the average used to
estimate heart rate during the scan. Four subjects with collapsed
IJVs, as determined by the expert, were excluded from the study.
The spokes ellipse algorithm was applied to all frames collected
from each of the 38 remaining subjects, and the first 512 con-
tinuously tracked frames were used in our analysis. (We used
512 frames because a power of 2 is required for the fast Fourier
transform in our algorithm, and because twice that many were
not needed.)

B. Validation of the Spokes Ellipse Algorithm

The spokes ellipse algorithm requires two assumptions: 1) the
vessels’ cross sections are elliptical and 2) the algorithm-drawn
ellipses are similar to the manual traces of the lumen drawn by
the expert. We define the similarity between two areas as

2 × (Area 1 ∩ Area 2)
Area 1 + Area 2

× 100. (7)

A perfect similarity would thus have a value of 100% [21].
The expert segmented five random image frames per subject.

We compared the manual segmentations against those derived
from the spokes ellipse algorithm (Fig. 2). We then tested the
similarity between the area of the expert traced area itself and: 1)
the ellipse fit to the expert tracing and 2) the algorithm defined
ellipse, to test assumptions 1 and 2, respectively.
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C. Vessel Property Calculations

For each subject and for each vessel, cross-sectional areas
were calculated and the Fourier transform applied. This allowed
for determination of the heart rate and respiratory rate. We then
calculated the phase and magnitude in the frequency domain at
the heart rate for each vessel. As described in Section II, this
permitted calculation of phase shift and phase consistency.

In general, an artery has a thicker muscular layer than a vein
of similar diameter. Thus, the artery is stiffer while the vein is
more compliant. A stiffer material emphasizes high frequencies
and attenuates low frequencies. A compliant material does the
opposite. We analyzed this phenomenon by calculating the slope
of the linear regression that best fit the Fourier transforms from
10 to 250 cpm.

Since the vein is more compliant and contains blood at a
lower pressure, it would seem less likely to assume a circular
shape than an artery. We calculated the eccentricity of the two
vessels as

eccentricity =

√
1 − b2

a2 (8)

where a is the semimajor axis and b is the semiminor axis.
We also looked at whether the IJV is consistently closer to the

skin than the CCA, as well as their absolute depths (measured
by distance between the centers of each vessel to the skin). In
addition, we considered the number of retained spokes and the
magnitude of the ellipse fitting error, as already described.

D. Vessel Classification Using Vessel Properties

The vessel classification problem can be reduced to ordering
the elements of a set: {CCA, IJV}. Given a pair of vessels
with feature vectors (vki ,v(1−k)i), where k equals 0 or 1, in a
series of tracked ultrasound images from a subject i, we wish
to determine k such that v0i = CCA and v1i = IJV. This is
equivalent to determining the order in which the vessels were
given where {CCA, IJV} is group k = 0 and {IJV, CCA} is
group k = 1.

We represent the m characteristics of each vessel for each
subject i by the m-dimensional vectors

vki = (vki1 , vki2 , . . . , vkim )

v(1−k)i = (v(1−k)i1 , v(1−k)i2 , . . . , v(1−k)im ). (9)

The difference d is calculated between each pair of vessels
for each subject i in both directions

dki = vki − v(1−k)i

d(1−k)i = v(1−k)i − vki . (10)

Note that phase difference at the heart rate is a property be-
tween two vessels and not of either vessel alone. It is already in
the form of v0i − v1i for d0i , so we can simply take its negative
to obtain v1i − v0i for d1i .

With this representation of the parameters, our goal is to find
a set of weights w = (w1 , w2 , . . . , wm ) such that w · d0i is
positive and w · d1i is negative. In other words, if w · dki is
positive, then the first and second given vessels are most likely

to be CCA and IJV, respectively. If not, then they are most likely
to be IJV and CCA, respectively, instead. The weights can be
found through Fisher’s linear discriminant analysis (LDA) [22].

However, the large parameter space (a total of 26 parame-
ters are computed by our algorithm, as will be described later)
may result in overfitting. In overfit models, variables that truly
do have the power to predict the correct group are somewhat
marginalized in their importance, and the predicting power of
the “weak” variables tends to be greatly overexaggerated. There-
fore, we need to reduce the dimensionality of the parameter
space.

To identify the set of the most differentiating parameters
based on the vessel differences, we used forward stepwise
LDA (SLDA) as implemented in the statistical package Statis-
tical Package for the Social Sciences (SPSS, Chicago, IL) with
Wilks’ lambda as the measure of significance. Small Wilks’
lambda values indicate those difference variables with high dis-
criminatory value between the groups of interest, k = 0 versus
k = 1. SLDA works by starting with the null set of variables and
adding one variable at a time: the variable that most reduces the
Wilks’s lambda of the set given the presence of the previously
selected variables. The addition of variables continues until no
more significant variables can be identified. This reduces the
dimensionality of the parameter space on which Fisher’s LDA
subsequently operates to determine w. A leave-one-subject-out
analysis was performed to validate the SLDA’s parameter selec-
tion as well as the Fisher’s LDA calculation of w.

IV. RESULTS

A. Analysis of Tracking

The expert verified that the algorithm, using the brute force
seeding method, successfully tracked the vessels in the first
512 frames of 38 subjects. The 512 frames from each of the
38 subjects were used to calculate the vessel parameters.

Loss of tracking occurred in four subjects after their first
512 frames (although those first 512 frames were still used
in the study). An analysis of the tracking loss provided some
interesting observations. The vessels in these frames are either
small or have incomplete vascular borders on ultrasound. This
was reflected in abnormal values observed in at least one of the
following parameters: 1) ellipse fitting error greater than 0.07; 2)
ellipse area < 500 pixels2; 3) fewer than ten eligible spokes; or
4) the two ellipses separated by more than 10 pixels. Although
this observation is only anecdotal given the present dataset, we
envision the ability, eventually, to develop an automated system
for detecting loss of tracking based on a combination of such
parameters.

B. Validation of the Spokes Ellipse Algorithm

As shown in Table II, among the 190 sampled images
(38 subjects ×5 random frames from each), there was a high
similarity between the manual tracings of the lumen and the el-
lipses fitted to these tracings, indicating that the cross-sectional
areas of the vessels were reasonably elliptical (assumption 1).
The similarity between ellipses fit by the algorithm and the
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TABLE II
SIMILARITY BETWEEN VESSEL CROSS-SECTIONAL AREA ESTIMATIONS (THE

RANGES REPRESENT 95% CONFIDENCE INTERVAL)

manual tracings was also high, indicating that the algorithm had
basically extracted the same area as the expert (assumption 2).

C. Vessel Feature Comparisons

Having validated the spokes ellipse algorithm for basic seg-
mentation, we next tested its use in generating features for vessel
classification by comparing the values of features generated by
the algorithm between the CCA and IJV. Table I lists the con-
fidence intervals and p-values for these comparisons. Features
with significant differences are candidates for distinguishing be-
tween the two vessels, although the size of the difference should
also be considered.

1) Ellipse Area: As expected from relative blood volume,
ellipse cross-sectional areas of the IJV were significantly larger
than those of the CCA.

2) Eccentricity: It was expected that, being more compliant,
the IJV would show a greater degree of eccentricity. However,
the respective means of eccentricity for the CCA and IJV were
0.66 ± 0.03 and 0.68 ± 0.02, a nonsignificant difference. Ec-
centricity is inherently dependent on the angle between image
plane and direction of the vessel, so that even circular vessels
can appear eccentric when scanned at an angle. The slightly
higher standard deviation of eccentricity for the CCA also con-
flicts with the expectation that the IJV would show a greater
variation in eccentricity over time. Thus, eccentricity is suspect
as a viable differentiating factor.

3) Number of Spokes Retained and Ellipse Fitting Error:
The data showed that the CCA retained significantly fewer
spokes than the IJV. This means the boundary of the CCA is
more likely to be ill-defined than the IJV. A direct consequence
is that the ellipse fitting error is also greater when fitting ellipses
to the CCA compared to the IJV.

4) Depth of Ellipse Centers: The CCA was found to be sig-
nificantly deeper beneath the skin than the IJV, as expected.
However, we did not further consider depth, for reasons given
before.

5) Fourier Transform: The changes over time for the cross-
sectional areas of the CCA and IJV in a typical subject are shown
in Fig. 3, and their Fourier transforms are shown in Fig. 4(a)
and (b). The heart rate in this subject corresponds to the peak
in magnitude around 60 cpm and is consistent with that de-
termined by palpation during the scan. Although the heart rates
extracted from the transform for each vessel should theoretically
be identical, and the difference is small, it is actually statisti-
cally reliable (p < 0.05). This may be due to the shapes of the
magnitude peaks in the frequency spectrum given that a simple
maximum was used.

Fig. 3. Time series of the cross-sectional areas of the IJV (top) and the CCA
(bottom) in a typical subject (subject #33) over a period of 30 s. Note the peaks
and troughs appear generally out of phase.

Fig. 4. Parameters of subject #33 in frequency domain. (a) Lower frequency
spectrum of Fourier transform of the time series of CCA cross-sectional areas.
(b) Fourier transform of the time series of IJV cross-sectional areas. (c) Phase
difference between CCA and IJV. (d) Phase consistency between CCA and IJV.

The respiratory rates extracted from the two Fourier trans-
forms did not differ significantly, as expected.

The slope of the lower frequencies (10–250 cpm) in the
Fourier transform of the IJV (−35.50 ± 6.16) was significantly
more negative than that of the CCA (−15.49 ± 2.37), with a
p-value <0.05. This is consistent with the IJV being more com-
pliant than the CCA, and thus attenuating the higher frequencies.
This also explains the higher magnitude of the IJV Fourier trans-
form at the heart rate and respiratory rate, which are typically
in the lower half (10–130 cpm) of the spectrum.
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TABLE III
STEPWISE WILKS’ LAMBDA STATISTICS AND STANDARDIZED CANONICAL

DISCRIMINANT FUNCTION COEFFICIENTS (wi )

6) Phase Difference and Consistency From Fourier Trans-
form: Phase differences show high consistencies (not shown
in Table I) around the frequency of the heart rate. This phase
difference at the heart rate has a 95% confidence interval of
−1.65 ± 0.54 rad. If we had reversed the CCA and IJV in the
calculation of phase difference, the 95% confidence interval
would simply be the negative, i.e., 1.65 ± 0.54 rad. Since these
confidence intervals include neither 0 nor π, it appears that phase
difference can be reliably used to differentiate between the CCA
and the IJV. For the particular patient shown in Fig. 4, near the
heart rate of 60 cpm, the phase difference is 2.2 rad and the
phase consistency is 0.9.

D. Vessel Classification Using Vessel Features

By not considering the depth difference between CCA and
IJV, we reduced the number of parameters for each subject
from 26 to 22. We used SLDA to determine the best predictor
variables and also their weights for this dataset (Table III), fur-
ther reducing the effective parameter space from 22 to 5. The
classification of each pair of observed blood vessels was done
by calculating the dot product of w and dki . Pairs of blood
vessels were classified as either {CCA, IJV} (class k = 0) or
{IJV, CCA} (class k = 1). The results are shown in Fig. 5. Data
points representing class k = 0 are diamond shaped while those
representing class k = 1 are circles.

The classification method was validated using leave-one-
subject-out analyses, in which each subject was used for testing
while the remaining 37 subjects were used for training. It turns
out that the same five variables were selected in each of the
37 sets. These results are represented by +’s for class 0 and
X’s for class 1. The two permutation classes are separated com-
pletely by the zero line and are mirror images of each other,
a consequence of their underlying parameters being negatives
of each other. The expert determined that the vessels were cor-
rectly classified in all iterations. They appear to cluster around
0.26 and −0.26, respectively. The leave-one-subject-out studies
show a greater degree of variance from the cluster centroids,
as would be expected, but they are still separated completely
by the zero line. The results demonstrate that our method can
automatically and accurately distinguish between the CCA and
IJV in B-mode ultrasound.

A histogram (Fig. 6) shows that the LDA of the five parame-
ters separates the two permutation classes into two well-defined,
approximately normally distributed, mirror image clusters in

Fig. 5. Fisher’s LDA based on five selected variables applied to all 38 sub-
jects. Diamonds represent the permutation {CCA, IJV} whose parameters are
weighed and summed based on weights derived from the entire 38-subject train-
ing set. Circles represent the other permutation: {IJV, CCA}. +’s represent the
permutation {CCA, IJV} from each subject whose parameters are weighed and
summed based on weights derived from the other 37 subjects. X’s represent the
other permutation.

Fig. 6. Frequency distribution of the weighted sum of the five parameters on
each subject using weights derived from Fisher’s LDA of the other 37 subjects.
The dotted histograms represent the {IJV, CCA} permutations while the brick
textured histograms represent the {CCA, IJV} permutations.

leave-one-out studies. The dot products for all the {CCA, IJV}
permutations are above 0 while the {IJV, CCA} permutations
are below 0.

V. CONCLUSION

We have shown in each of our 38 subjects (after excluding 4
with collapsed IJVs, who would not normally be candidates for
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catheter insertion) that the spokes ellipse algorithm maintained
tracking for at least 51 s (512 continuous frames) during the
120-s ultrasound scans. Although the CCA and IJV both pul-
sate, we have verified that the differences in depth of the vessels
alone can distinguish between the vessels. However, in clinical
situations where doctors often seek probe positions that orient
the vessels side by side, a combination of other intrinsic vessel
properties can be used to distinguish reliably between the ves-
sels: the slopes of the Fourier transforms, phase shift between
the vessels, heart rate as determined from the Fourier transforms,
and the mean and upper 90th percentile ellipse fitting error.

A real-time system has been constructed into a clinical ultra-
sound machine that examines the image frames, determines the
locations of two candidate vessels by brute force ellipse fitting,
fits ellipses using the spokes ellipse algorithm, and calculates
the relevant parameters. In just a few seconds, after sufficient
frames have been acquired to perform a Fourier transform, the
system marks the CCA red and the IJV blue. In the indetermi-
nate case (if the data point is too close to the zero line in Fig. 6),
both are marked green. The entire calculation is performed on
our laptop system well within 0.1 s, allowing a 10-fps image
acquisition rate. The graphically overlaid markers are projected
within the patient along with the ultrasound image by the sonic
flashlight. After initialization, the system tracks in real time by
using a sliding window of previous frames. Our results, although
limited to healthy subjects, show that the system can reliably de-
tect and label the CCA and IJV on this population. Future work
includes extending the methods we used to identify the vessels
to detect patterns of pathology, based on ultrasound scans of the
CCA and IJV.
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