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Abstract
Image matching, a common technique in Computer 
Vision to identify objects, persons, locations, etc., is 
widely used in both military and civilian applications. 
For common image matching algorithms, results may 
vary when the raw images are captured under different 
lighting conditions. To reduce the unwanted influence 
from ambient lighting, we propose a novel method 
to match images that contain ridge features. The new 
method uses an established ridge detection algorithm 
to reduce raw images to sets of ridge points, each point 
defined by its orientation and location. To perform 
ridge matching, we find the pair-wise transform 
between every ridge point from one image and every 
ridge point from another. The result is a point cloud 
in transform space. The correlation between two sets 
of ridge point is equivalent to the density of the point 
cloud, computed by convolving the point cloud with a 
blurring kernel. The best match is found as the location 
in transform space at which the correlation reaches 
global maximum. We tested the new method on two 
image pairs; the first image pair contained artificial 
ridge features and the second pair was sampled from 
a high resolution image of the human palm. Both tests 
returned accurate results.
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Introduction
The Ambient Lighting Problem 
Image-based positioning systems are used for 
advanced medical imaging techniques. When a set 
of 2D images—such as acquired by a conventional 
ultrasound scanner—is used to construct a 3D volume 
of a structure inside the human body, we require 
the continual position of the scanner relative to the 
patient. With an a priori 3D image map of the exterior 
surface of the patient reconstructed from multiple high 

resolution images, subsequent images from a small 
mobile camera can be matched with a correct projection 
rendered from the 3D map to compute the position 
of the camera relative to the patient. When the small 
mobile camera is mounted on the ultrasound scanner, 
the relative position of the scanner thus determined 
can be used to construct a 3D volume [1]. A significant 
problem with this camera-based approach is that 
images are affected by ambient lighting conditions. The 
performance of common image matching algorithms is 
penalized when variations in ambient lighting affects 
the intensity of image pixels, causing the local features 
used in matching to become unstable.

Motivation for Ridge Matching
The ridges on the skin are inherent physical structures, 
often represented by connected groups of salient 
ridge points within an image. Under normal lighting 
conditions, these features are resistant to changes in 
light source location, light source intensity, and shadow 
patterns. Another key advantage of ridge features is 
their inherent orientation property. Every ridge point 
has a well-defined ridge direction, tangent to the 
ridgeline at the given ridge point. The ridge direction 
provides additional constraints for computing the 
rotation between different images. Since ridge features 
are common on the surface of the human body, the same 
ridge structure is likely to be detected in images that 
have significant overlap. By using ridge features, a fast 
and closed form solution can be reached for matching 
two camera images with a rigid transform [3] [4].

Methods
Representation of Ridge Features
Our new method first extracts the location of ridge 
points in the images, using preprocessing algorithm 
based on an established scale-invariant ridge detection 
method [2]. The algorithm takes a raw grayscale image 
I as the input and returns a black and white image BW 
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as the output. A pixel at the image location (x, y) is 
considered a ridge point if BW(x, y) = 1.

Each ridge point has an inherent orientation, which 
is the local direction along the ridge line. To compute 
the orientation at the ridge point (x0, y0), we consider 
the local Hessian matrix H(x0, y0). Since H(x0, y0) is 
a symmetric real valued matrix, we may perform 
eigenvalue decomposition on H(x0, y0) to obtain an 
orthonormal set of eigenvectors (Eq. 1). 

Without loss of generality, let |λ1| < |λ2|. Then the unit 
eigenvector corresponding to λ1 represents the principle 
direction of least curvature. The reason to find this 
eigenvector is that, in a ridge-like structure, the principle 
direction of least curvature points along the ridge line. 
From Eq. 1, the eigenvector that corresponds to λ1 is 
the unit vector [cosθ0 sinθ0]

T, which can be described 
by a scalar angle θ0 that ranges from -180° to 180°. 
The orientation of the ridge point at (x0, y0) is therefore 
mathematically defined as the scalar angle θ0, for which 
H(x0, y0)[cosθ0 sinθ0]

T = λ1[cosθ0  sinθ0]
T.

The original image I is reduced to a set of ridge points, 
represented by a matrix S defined in Eq. 2.

Each row of S contains the necessary parameters to 
describe a ridge point: the ridge point location (xi, yi) 
in the image, and the ridge point orientation θi. The 
subscript n in Eq. 2 represents the total number of ridge 
points found in the original image, and the value is n 
is typically less than 5% of the total number of pixels 
in I. The resulting matrix S is used as input to a ridge 
matching algorithm, described next.

Operations in Transform Space
To match two images I1, I2 with a rigid transform, we 
need to find the best overall translation and rotation 
between the two images.

We define the Transform Space K as the set of all 
possible rigid transforms {Δx, Δy, Δθ} between the 
two images; the best match is represented by a location 
in K. Since the images have been reduced to two ridge 
feature matrices S1 and S2, each pair of ridge points, v1 
= (x1, y1, θ1) ∈S1, v2 = (x2, y2, θ2) ∈S2, are correlated by a 
rigid transform t: S1×S2→K given by (See Eq. 3 above)

As a consequence of Eq. 3, if I1 and I2 have their top and 
left boundaries aligned (allowing for different sized 
images with their origins in the upper left corner), by 
applying the rigid transform t to image I1, the locations 
and orientations of v1 and v2 will coincide.

To find the best rigid transform between I1 and I2, we 
map every pair of ridge points v1 = (x1, y1, θ1) ∈S1, v2 
= (x2, y2, θ2) ∈S2 to a vector in the Transform Space, 
and the result is a cloud of points in Transform Space 
K. Every point in the resulting point cloud represents 
a potential transform mapped from a unique pair of 
ridge points. When a large number of ridge point pairs 
map to the same transform, that particular transform is 
more likely to be correct. In an intuitive interpretation, 
if the best rigid transform is applied to I1, the highest 
number of ridge points will approximately coincide.
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Maximal Correlation
In practice, no two ridge point pairs will map to the 
exact same transform when the images acquired with 
noise and distortion are sampled at a finite resolution. 
However, when a good match exists between two 
images, the point cloud tends to form a dense cluster 
near an optimum location in the Transform Space K. A 
measurement of point cloud density at every location 
in K provides us the correlation between S1 and S2 for 
every possible rigid transform. To do so we define a 
density function D: K→R, where

In Eq. 4, each vector in Transform Space K is treated 
as an impulse function of three variables. The point 
cloud in K is therefore represented as a finite sum 
of impulse functions. We compute density function  
by convolving the point cloud and a blurring kernel 
f. Here, the kernel  f has the value 1 in the cuboidal 
region of size 1×1×0.2 centered at (0, 0, 0) and has the 
value 0 elsewhere.

The density function D reaches a global maximum at 
the optimal transform. The best match is found as the 
location in Transform Space at which  assumes the 
maximal value.

Results
Test on Artificial Ridge Features
We first tested our method on artificially constructed 
ridge features. Figure 1 shows a large image containing 
these artificial features. Every ridge point in this 
particular set has only four possible orientations: θ 
= -45°, 0°, 45°, or 90° The location and orientation 
of every ridge point are precisely known and serve 
as ground truth for validating our ridge matching 
algorithm.

Two small patches (See Figure 2) were selected from 
the large artificial ridge map to simulate the binary 
images BW1, BW2 after ridge extraction. The offsets 
were (0, 0) and the rotation between them was 50°. 
The patches were used to generate the point cloud in 
Figure 3. The density of the point cloud was calculated 
and displayed separately in Figure 4 and Figure 5. The 
optimal transform was found as (0, 1, 50°), accurate to 
a single pixel.

Test on Real Sampled Images
The ridge matching algorithm is next tested on real 
images of the human palm. Two patches (See Figure 
6) were sampled from a larger palm image of the palm. 
The offset between the sampled patches was (80, -20) 
and the rotation between the patches was 80°. Figure 
7 shows the binary images produced by the ridge 
detection algorithm. Figure 8 shows the point cloud 
generated from the ridge feature matrices. Figure 9 
and Figure 10 display the density map of the point 
cloud in Figure 8. The maximal correlation density 

Figure 2. Binary images selected from the large artificial 
ridge mapFigure 1. Image containing artificial ridge features
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Figure 3. Point cloud in Transform Space generated from 
two sets of artificial ridge features

Figure 4. Projection of the density function onto the Δθ 
axis

Figure 5. Cross section of the density function at Δθ = 50°

Figure 6. Sampled images of the human palm

Figure 7. Binary images containing ridge points detected 
in the palm images

Figure 8. Point cloud generated from real ridge sets
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occurs at (80, -19, 80°), also accurate to a single pixel, 
reasonable given sampling error.

Discussion
The artificial ridge features produced strong outlier 
clusters in the Transform Space. This effect can be 
attributed to how the artificial ridges were constructed, 
where all ridge points were forced to take one out of 
four possible orientations and all ridge lines are long 
continuous straight lines. There is a risk that when 
the images being matched contain a large number 
of repetitive ridge features, the correct match will 
reliably result from our method. However, in our 
particular experimental case, the artificial ridge test 
demonstrated that our method is capable for matching 
images to within a single pixel of error, warranting 
further test on real image datasets.

The real palm images produced equally accurate 
results. The point cloud, compared to that generated 
from artificial features, is more scattered in Transform 
Space, but the global peak in the density function is 
also more prominent for real image datasets.

Conclusion
The strong response demonstrated to inherent ridge 
features allows operations without specialized markers 
on the skin. As the ridge feature possess inherent 
orientations, these features are likely to stay stable 
under normal variations in ambient lighting. Given 
the present challenge of matching two 2D images 
with a ridge transform, a process with 3 degrees of 
freedom (2 translations and 1 rotation), the fact that the 
individual ridge features also have the same equivalent 

3 parameters (2 locations and 1 orientation) results in a 
closed form solution that is both fast and reliable. The 
accuracy of the matching algorithm requires that the 
images being matched contain ridge-like features. By 
modifying the preprocessing algorithm to detect other 
types of features such as edges or elliptical blobs, our 
proposed method can also be generalized to other types 
of feature matching. We are also working to include 
additional degrees of freedom, such as scale changes 
between two images, which can be accommodated 
by using higher dimensional votes in transform space 
than simple points.
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Figure 10. Cross section of the density function at Δθ = 50°Figure 9. Projection of the density function onto the Δθ axis


