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Gradient-oriented profiles are presented as a novel method for boundary parameter-
ization and unsupervised boundary classification. Each profile is created at locations
of high gradient magnitude by sampling an ellipsoidal neighborhood of voxels oriented
along the image gradient. Every profile is analyzed via nonlinear optimization to fit the
best cumulative Gaussian, directly parameterizing the boundary to yield estimates of (1)
extrapolated intensity values for voxels located far inside and outside of the boundary
and (2) boundary location and width. For these parameter estimates, intrinsic mea-
sures of confidence are established to eliminate the low-confidence parameters. Gradient-
oriented profiles are demonstrated on artificially generated three-dimensional test data
and shown to accurately parameterize and classify the boundary, establishing them as
a high-quality replacement for simpler methods of boundary detection. Towards shape
analysis gradient-oriented profiles are applied to medial primitives known as core atoms.
The additional intensity information delivered by gradient-oriented profiles improves the
function of core atoms by eliminating dependence on the absolute direction of the lo-
cal image gradient and the background intensity. The performance of core profiles is
demonstrated on test data simulating a three-dimensional ultrasound scan of the heart
improving the previous capabilities of core atoms.
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1. Introduction

Boundary detection is a well-established field, described in practically any gen-
eral reference.1–4 Many methods of image analysis employ a boundary detection
scheme that first begins with the identification of boundary candidates by sim-
ple measurement of the gradient magnitude throughout an image and selection of
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candidates above a pre-determined threshold. Such systems are sensitive to ob-
ject and background intensity, as well as overall image contrast, for example the
Roberts Cross and Sobel edge detectors. These issues may be overcome by provid-
ing a more detailed parameterization of the boundaries, which we accomplish with
gradient-oriented profiles.

Boundaries in images are characterized by local changes in intensity values,
corresponding to a strong gradient. Therefore, these boundaries can be found by
taking the derivative of the image and locating the maximum derivatives. Taking
the derivative of the image may proceed by convolving the image with a number of
kernels, such as the Roberts Cross and Sobel kernels. The Roberts Cross convolution
kernel when applied to gray-images yields gradient magnitude and location, but is
very sensitive to noise. The Sobel convolution kernel is larger, effectively smoothing
the image and reducing the high-frequency associated with noise. This makes the
Sobel kernel better at detecting boundaries than the Roberts Cross, but it is slower
to operate and still sensitive to noise.5 We have followed the gradient boundary
detection approach for the initial collection of boundary points. Gradient-oriented
profiles begin by finding locations in the image with a gradient magnitude greater
than a pre-determined threshold. This can be accomplished with any technique that
delivers the gradient magnitude and orientation of the boundary point (we use a
Difference of Gaussian (DoG) gradient detector).

The noise sensitivity of the Roberts Cross and Sobel kernel arise from tak-
ing a derivative, which amplifies the high-frequency noise in the image. Marr6,7

and Canny8 resolve this problem by convolving the image with a Gaussian ker-
nel prior to calculating the derivative. Increasing the width of the Gaussian kernel
smooths the image, reducing the detector’s sensitivity to noise, but losing some of
the finer details in the image. We also smooth the image with a Gaussian kernel
prior to applying DoG gradient detector. After the Gaussian smoothing, Marr’s
approach proceeds with the application of a Laplacian of Gaussian (LoG) filter lo-
cating boundaries wherever its value is zero. The LoG can be closely approximated
by a DoG and achieve the same accuracy if a slightly larger filter size is used.
Canny’s boundary detector requires a set of boundary detection filter masks that
have various orientations. The masks contain a derivative of a Gaussian function
to perform a directional derivative across the intended boundary. When applied, a
smooth averaging profile appears in the mask along the intended boundary direc-
tion in order to reduce noise without compromising the sharpness of the boundary
profile.1 Like the Canny edge detector, we operate along the gradient direction
averaging voxel intensities to reduce noise sensitivity and generate boundary pro-
files. The Marr and Canny edge detectors require multiple applications of filters at
different scales for a thorough edge detection procedure. Gradient-oriented profiles
require a single application for a full parameterization of the image boundaries.

A useful property of the gradient magnitude is its inherent insensitivity to ro-
tation. More complex parameterizations of the boundary can also be made rota-
tionally invariant by operating along the local gradient vector. Steerable Filters,
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for example, parameterize the boundary using a basis set of Gaussian derivatives
that is easily rotated into the coordinate system of the local boundary.9 We ac-
complish an equivalent rotation with gradient-oriented profiles by projecting voxels
onto the gradient vector to produce a one-dimensional intensity profile. Fitting a
specific function to the profile, the cumulative Gaussian, directly yields physically
significant estimates that parameterize the boundary; specifically, (1) the extrap-
olated intensity values for voxels located far inside and outside of the boundary
and (2) estimates of boundary location and boundary width. Individual measures
of confidence are calculated for these parameters to eliminate low-confidence pa-
rameters. However, initial oversampling for candidate boundary points results in
a large population of overlapping neighborhoods. Thus, sufficient high-confidence
parameter estimates remain for a thorough survey of the boundary.

The methodology of gradient-oriented profiles is presented in Sec. 2.1. Gradient-
oriented profiles are applied to three-dimensional test data consisting of one bound-
ary between two regions of differing intensities (Sec. 3.1). Unlike other boundary
detectors that merely detect the presence of a boundary (not the actual location of
the boundary), gradient-oriented profiles determine the optimal location of the true
boundary and parameterize it supplying information useful to virtually all schemes
of shape analysis. In Sec. 3.1.1 (Fig. 6), we compare the performance of the gradient-
oriented profiles versus the DoG kernel for estimating the location of boundaries.
Our application for this work is the automated parameterization of the left ventric-
ular (LV) boundary and measurement of LV and myocardial volume in real-time
three-dimensional (RT3D) ultrasound cardiac scans.10 RT3D produces images that
are 8-bit, three-dimensional, and anisotropic, although gradient-oriented profiles
can be applied to any three-dimensional data. This imaging modality is capable of
capturing volumes of cardiac data in real-time, but has a low signal-to-noise ratio.
Automated detection of the LV and determination of its volume with time would be
clinically useful in diagnosing abnormal cardiac function and calculating myocar-
dial stress and strain. Such techniques could be generally applicable to all medical
imaging modalities.

Deformable contours have been shown capable of finding and measuring the
LV using data from 2D ultrasound scanners.11–13 Coppini et al. have applied de-
formable surfaces to mechanically scanned 3D ultrasound data.14 Stetten et al. have
applied deformable methods to Real Time 3D (RT3D) ultrasound, but results were
not encouraging due to the inherent low signal-to-noise ratio.15 Further work by
Stetten led to the development of an automatic technique that can successfully de-
tect the LV and measure its volume in RT3D. A medial approach was taken relating
multiple boundary points to common central points deep within the object by using
core atoms as a construct to medial node models.16

A core atom is formed from pairs of boundary points that face each other across
the intervening distance. This limits the shapes that can be found using core atoms,
also making a measure of myocardial volume unfeasible. In addition, core atoms
only use boundary point orientations, making it difficult to differentiate particular
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tissue types on either side of the boundary. These limitations of core atoms can be
overcome by providing intensity information about those tissues. Gradient-oriented
profiles, do exactly this, thus it seems natural to apply gradient-oriented profiles
to core atoms, enhancing their performance by (1) allowing the formation of core
atoms by matching the intensities on the medial sides of both boundaries and (2) es-
timating the location of the anatomical boundary. The term core profile has been
given to the newly constructed core atom enhanced by gradient-oriented profiles.
The process of constructing core profiles is presented in Sec. 2.2 and the result-
ing performance of core profiles on three-dimensional test data resembling that of
cardiac data can be found in Sec. 3.2. These results also include a simple and pre-
liminary method for the measure of the volume in the test data corresponding to
the LV and the myocardium.

2. Methods

2.1. Construction and analysis of gradient-oriented profiles

Our algorithm for boundary parameterization and classification proceeds in the
following steps (described in corresponding subsections of the text):

(i) Find boundary candidates with a Difference of Gaussian (DoG) gradient de-
tector;

(ii) Define ellipsoidal neighborhoods around detected boundary points and project
voxels within each ellipsoid into bins along the major axis, yielding a profile
of voxel intensity;

(iii) Fit a cumulative Gaussian to the intensity profile, estimating values for in-
tensity on both sides of the boundary as well as location and width of the
boundary;

(iv) Eliminate blatantly “bad” profiles;
(v) For the remaining profiles, calculate measures of confidence for the estimated

values and eliminate those according to a certain threshold;
(vi) Classify the boundary using the high-confidence estimated values.

2.1.1. Finding boundary candidates

A population of candidate boundary points is collected on a regularized sampling
grid using a Difference of Gaussian (DoG) gradient detector. There are many forms
of DoG gradient detectors. One common version finds the difference between two
concentric Gaussian kernels of different scale.1 In contrast, our DoG consists of three
pairs of same-scale Gaussian filters displaced in location along each of the cardinal
axes from the sample point to measure the respective components of the gradient.
We use our DoG gradient detector because it is more efficient and delivers gradient
direction as well as gradient magnitude. Each boundary candidate that exceeds a
pre-determined threshold for gradient magnitude is used to generate an individual
boundary profile.
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Fig. 1. The left shows an ellipsoidal neighborhood; whose center is the location of the DoG
gradient detector and major axis is the gradient vector, with two adjoining disks, A and B. The
right shows a voxel (square) projecting onto the major axis, splatting 3/4 of its intensity value
into bin B and 1/4 into bin A.

2.1.2. Generating a boundary profile

Given the detection of a boundary by the DoG detector, a boundary profile is
generated in the direction of the gradient by sampling the voxels in an ellipsoidal
neighborhood centered at the DoG detector whose major axis is along the gradient
vector. We project the voxels within the ellipsoidal neighborhood onto the major
axis where their values are splatted into bins. Splatting is a technique commonly
used in computer graphics that projects the footprints of individual voxels onto
a plane. Overlapping footprints are collected in bins to form a rendered image.
Instead of splatting onto a plane, we splat onto a line, namely, the major axis of
the ellipsoid. As shown in Fig. 1, the ellipsoid is divided into disks along the major
axis, with corresponding bins collecting footprints from voxels in adjoining disks.
Since the footprints are wider than the bins, each voxel contributes to a number
of bins. We use a triangular footprint, with the effect of linearly interpolating the
intensity of each voxel between neighboring bins along the axis. The weight of
contribution for each voxel is separately stored so that the total intensity in each
bin can be normalized. Thus, the profile represents the average voxel intensity for
each disk within the ellipsoidal sampling region. Averaging within each disk reduces
the effect of image noise on the boundary profile.

2.1.3. Fitting the profile and estimating parameter values

A number of different functions could potentially be used to fit to the profile.
The cumulative Gaussian was chosen for reasons now described. Most anatomical
boundaries are very abrupt, inherently step functions at the sub-millimeter scale
where one tissue ends and another begins. Image acquisition is inevitably limited
in resolution, however, with a particular device exhibiting an overall “point spread
function” usually at a significantly larger scale than the actual tissue boundary. Ad-
ditional blurring may be performed intentionally or inevitably, for example, during
the image processing that converts the raw data to an image. The result of these
sequential convolutions tends to have the effect of convolution with a Gaussian ker-
nel because of the Central Limit Theorem. Thus we can expect the step function of
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the anatomical boundary to reach the image analysis stage as a cumulative Gaus-
sian, i.e., the convolution of a step function with a Gaussian. Therefore, by fitting a
cumulative Gaussian, we may, in effect, reverse the blurring and parameterize the
original boundary.

Fitting a cumulative Gaussian to a boundary profile requires optimizing four pa-
rameters: (1) standard deviation, corresponding to the boundary width, (2) mean,
corresponding to boundary location, and (3, 4) two asymptotic values, correspond-
ing to voxel intensity on either side of the boundary sufficiently far from the
boundary to be unaffected by blurring.

The cumulative Gaussian is derived as follows. The normalized Gaussian

G(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, (1)

is integrated to yield the error function (erf )∫ x

−x
G(v) dv = erf

(
x− µ
σ
√

2

)
, (2)

which is scaled and offset to yield the cumulative Gaussian C(x)

C(x) = I1 +
I2 − I1

2

(
1 + erf

(
x− µ
σ
√

2

))
. (3)

The four fixed parameters of C(x) are µ (mean), σ (standard deviation), and I1
and I2 (asymptotic voxel intensity inside and out). On one side of the boundary

erf (−∞) = −1 , C(−∞) = I1 (4)

and on the other side

erf (∞) = 1 , C(∞) = I2 . (5)

The four parameters are labeled in Fig. 2, which shows a particular fit of the
cumulative Gaussian along the sampled portion of the boundary profile.
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Fig. 2. A cumulative Gaussian fit to a profile from a sampled region (shaded area).
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A variety of techniques are available for optimizing the fit of a nonlinear func-
tion to a set of sample points. We chose a Quasi-Newton nonlinear optimization
algorithm provided as part of the AD Model Builder from Otter Research, Inc.,17

because it does not require explicit derivation of derivatives and is acceptably rapid
and robust. To make intelligent use of parameters estimated from the curve fitting,
measures of confidence for each of the parameters are established. This takes the
form of two steps, as described in the following two sections.

2.1.4. Eliminating bad profiles

The first step involves the elimination of unacceptable parameters by rejecting
blatantly “bad” profiles for which a reasonable fit of the cumulative Gaussian could
not be found. The fit is rejected if:

(i) Either extrapolated voxel intensity value I1 or I2 falls outside of the acceptable
range of values for the imaging modality;

(ii) The estimated boundary location µ falls outside of the ellipsoidal sample region.

Boundary profiles that are rejected by these criteria are no longer considered.
Determining confidence levels for the estimated parameters and eliminating low-
confidence estimates on a parameter-by-parameter basis further eliminates bad
profiles.

2.1.5. Establishing intrinsic measures of confidence

If a fit was accepted for a given profile, the next step is to determine a measure of
confidence in the individual parameters of the cumulative Gaussian. We postulate
that the confidence for a particular parameter is related to the location of the
boundary within the ellipsoid, as well as the boundary width.

In Fig. 2, the cumulative Gaussian that best fits an intensity profile is shown.
By definition, the underlying function (ignoring the particular region over which
it was sampled) is symmetrically distributed on either side of the mean µ (µ with
representing the optimum boundary location). However, the function is not gener-
ally symmetrically distributed with respect to the sampling region, represented by
the shaded area from p1 to p2. Given that the best fit has a mean µ and standard
deviation σ, two distances d1 and d2 can be defined from µ to p1 and p2 respectively,
from which two normalized distances z1 and z2 can be computed as

z1 =
d1

σ
and z2

d2

σ
. (6)

The values of z1 and z2 indicate how many standard deviations from µ in each
direction the actual samples extend, and serve as measures of confidence for I1 and
I2, respectively. For each direction, the greater the number of standard deviations
the samples extend from µ, the less the effect of the boundary and the more ac-
curately we can expect to estimate intensity. For example, in Fig. 2 we have more
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confidence in the estimate I1 than the estimate I2, because d1 > d2, and therefore
z1 > z2.

In addition to a measure of confidence for I1 and I2, we have developed one for
µ. Our measure of confidence for µ determines whether sufficient samples exist on
either side of µ to estimate it accurately. We define this measure of confidence as

zmin = min(z1, z2) . (7)

If on either side of µ, insufficient samples exist to anchor the cumulative Gaussian,
zmin will be small, and we can expect difficulty in estimating µ accurately. Like the
measures of confidence for profile intensity estimates, a threshold is also placed on
zmin to determine whether there is acceptable confidence in µ.

2.1.6. Classifying the boundary

Armed with high-confidence estimates for I1, I2 and µ, we can now classify
the local boundary in terms of these parameters. The parameters I1 and I2 estimate
voxel intensity beyond the ellipsoid, sufficiently far from the boundary to be stable
and the mean µ estimates the anatomical boundary location within the ellipsoid.

Rather than struggling to extract the last bit of classification from each profile,
our measures of confidence permit us to exclude individual parameters on a case-
by-case basis. In the initial gathering of boundary candidates, we use a sampling
interval well below the conventional Nyquist guidelines, to yield a comprehensive set
of profiles from which a thorough examination of a given boundary can be made.
By setting thresholds for the intrinsic measures of confidence, we may reject or
accept individual estimates to make intelligent use of this over-sampled population.
The exact method of setting these thresholds optimally is beyond the scope of
this paper.

2.2. Core profiles

The theory behind the construction of core profiles is very similar to that of core
atoms. A brief review will be included here, but a more detailed explanation can
be found elsewhere.18,19 Rather than consisting of two boundary points like a core
atom, a core profile consists of two boundary profiles. The collection of the bound-
ary profiles follows the methods as discussed in Sec. 2.1. For each boundary pro-
file, search regions are established along the image gradient in both directions.
Within these two regions, boundary profiles are sought after that meet the following
requirements:

(i) The distance between the boundary profiles (optimal boundary locations) is
within a specified range. This permits savings in computation if there is a
priori information about the expected width of the object. If this requirement
is met, in addition to those that follow, a core profile is create and this distance
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is termed the scale of the core profile and is defined as

‖~s1,2‖ = b2 − b1 , where smin ≤ ‖~s1,2‖ ≤ smax . (8)

The vector ~s1,2 indicates the direction from the first boundary profile to the
second boundary profile and the core profile is located at the midpoint between
the two boundary profiles. Figure 3 illustrates a core profile created across an
object of intensity I1 against a background of intensity I2.

(ii) The face-to-faceness, defined as

F (b1, b2) =
∣∣∣∣( ~s1,2

‖~s1,2‖
· ~n1

)(
~s1,2

‖~s1,2‖
· ~n2

)∣∣∣∣ , (9)

where ~ni (i = 1, 2) is the orientation of the ith boundary profile, is sufficiently
close to one, while still allowing some variation in the relative orientations of
the boundaries.

(iii) For the candidate boundary profiles, the intensity estimates for the space they
traverse must both be high-confidence estimates (established in Sec. 2.1.5)
and have similar values within some pre-determined threshold. As illustrated
in Fig. 3, Iij (i, j = 1, 2) is the intensity estimate for region i by core profile bj .
The threshold placed on this intensity estimate is denoted zij (i, j = 1, 2), the
threshold of core profile bj’s intensity estimate for region i. Thus, core profile
~s1,2 is acceptable if all of the following are met:

(a) z11 > threshold(z11) (10)

(b) z12 > threshold(z12) (11)

(c) |I11 − I12| < τ, where τ is an intensity threshold (12)

Any profile may link to multiple profiles becoming involved in multiple core
profiles. The additional intensity information delivered by gradient-oriented profiles
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Fig. 3. A core profile spanning across data containing voxels of intensity I1 (shaded area) against
a background of intensity I2. The core profile consists of two boundary profiles in the direction
of ~s1,2 and a center midway between the optimal boundary locations. Iij is an intensity estimate
for region i by core profile bj . The angle between the core vector ~s1,2 and the individual gradient

directions does not have to be zero (see (ii) of requirements). Also, the exterior voxel intensities
I2 do not have be the same for each boundary profile (see (iii) of requirements).
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Fig. 4. A network consisting of four core profiles formed in data consisting of at least three
different values for voxel intensity. The core profiles indicated with the solid lines are termed
homogeneous core profiles and the dashed line represents a heterogeneous core profile because it
spans regions of intensity non-specific to its estimates.

permits core profiles to be formed in both directions of the gradient resulting in
a network of core profiles as shown in Fig. 4. Core profiles ~s1,2, ~s2,3 and ~s3,4 are
termed homogeneous core profiles because their entire lengths span local regions for
which the gradient-oriented profiles estimate. Core profile ~s1,4 is a heterogeneous
core profile because it spans regions that include homogeneous core profiles. This
may prove to be useful in constructing a hierarchy of objects within a dataset for
analysis or compression.

The third criterion for core profile construction includes only high-confidence
estimates for the shared intensities of the profiles. In certain cases, this constraint
can be extended to impose that both intensity estimates for each core profile are
high-confidence estimates. This would be useful in classifying boundaries where
both intensity regions are known to be in a certain range and a deviation from this
intensity range would imply that an abnormality exists in that region.

3. Results

3.1. Gradient-oriented profile test data

We demonstrate the application of gradient-oriented profiles on a 3D data set,
100 voxels on a side, consisting of 8-bit voxels. An artificial sphere was generated
with a radius of 30 voxels, an interior value of 64, and an exterior value of 128. A
binomial kernel was applied multiple times to the data, approximating a Gaussian
and simulating the point-spread function of a real image. Using the DoG gradient
detector kernel, as described in Sec. 2.1.1, a total of 1,400 boundary candidates
was found. According to the method described in Sec. 2.1.2, voxels in an ellipsoidal
neighborhood were sampled for each boundary candidate. The center of the ellipsoid
was the location of the DoG kernel. The major axis of the ellipsoid along the gradient
had a length of ten voxels and the minor axes had lengths of six voxels each. Along
the major axis, ten bins were established, each being one voxel wide. The intensity
values of the voxels within the ellipsoid were splatted into the bins (using a triangle
footprint), and normalized by the splatting weights. A cumulative Gaussian was fit
to the resulting intensity profile as described in Sec. 2.1.3.
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Of the resulting 1,400 profiles, 240 profiles were eliminated because they did
not meet the constraints defined in Sec. 2.1.4. For the remaining profiles, the mea-
sures of confidence for the classification parameters were calculated as derived in
Sec. 2.1.5. The results of applying gradient-oriented profiles to the 3D test model
were compared to the known parameters of the test data and described below.

3.1.1. Measuring accuracy of gradient-oriented profiles in the test model

After eliminating “bad” profiles, the accuracy of the remaining profile parameters
was measured using a priori knowledge of the test data. The test data contains a
sphere, which is completely parameterized by its radius (the distance Rtrue from
its center to the location of the boundary) and the intensities on both sides of the
boundary. The interior intensity of the sphere is denoted I1, and the exterior, I2.
The estimate of intensity derived from the profile for either I1 or I2 is denoted
Iestimate, and we define Ierror as

Ierror = |Itrue − Iestimate| , (13)

where Itrue is the known voxel intensity I1 (64 inside the sphere) or I2 (128 outside
the sphere).

Figure 5 shows that profiles with µ near the center of the ellipsoid are able to
estimate the intensity on either side of the boundary better than when µ is located
away from the center of the ellipsoid. When µ is located away from the centers
of the ellipsoid, intensity values are estimated less accurately in that direction.

Intensity Errors vs. µµ
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Fig. 5. The distribution of error in estimating the intensity values on either side of the boundary
as a function of µ (with zero being the center of the ellipsoid).
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Fig. 6. Accuracy in estimating the location of the boundary by gradient-oriented profiles com-
pared to the location of the DoG kernel.

However, such a profile will estimate the intensity in the opposite direction with
high accuracy. For example, in Fig. 5, I2 can be estimated to within one unit of
intensity, when µ is much less than zero.

The accuracy in estimating the true boundary location of the test data was
determined as follows. The distance from the center of the sphere to the location
on the major axis of the ellipsoid corresponding to µ was defined as the estimated
radius Restimate. This was compared to the known radius Rtrue of the sphere, with
Rerror being defined as

Rerror = |Rtrue −Restimate| . (14)

Figure 6 shows that boundary profiles are more accurate in determining the
true location of the boundary than the original DoG boundary kernels. Out of the
1,160 total profiles, 1,152 (99.31%) had location estimates within one voxel.

3.1.2. Judging intrinsic measures of confidence

We have shown that gradient-oriented profiles are able to estimate the intensity
values and localize the boundary location. We now demonstrate the validity of our
intrinsic measures of confidence.

The measures of confidence for the profile parameters were calculated using the
methods discussed in Sec. 2.5. Figure 7 shows the error in estimating I1 (interior of
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Fig. 7. The error in estimating the intensity for the interior of the sphere I1 versus its measure
of confidence Z1.

sphere) as a function of its measure of confidence z1. For two standard deviations
(z1 ≤ 2.0) the error, Ierror < 5. Therefore, as seen in Fig. 7, a threshold placed on
z1 of 2.0 would guarantee this accuracy.

With this threshold, 776 of the total profiles (67%) will estimate the intensity I1
with high confidence. Similarly, Fig. 8 shows the error in estimating I2 (exterior of
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Fig. 8. The error in estimating the intensity exterior to the sphere I2 as a function of its measure
of confidence Z2.
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Fig. 9. Error in boundary location from gradient-oriented profiles versus measure of confidence.

sphere) as a function of its the measure of confidence z2, with similar results using
a threshold for z2 of 1.45.

We predicted earlier that profiles with µ near the center of the ellipsoid should be
able to estimate both intensities I1 and I2 with high accuracy. We identified 632 out
of the 1,160 (54.48%) profiles that were able to reliably classify both intensities as
described above. Our measure of confidence for µ is shown in Fig. 9. For zmin > 1/2
standard deviations a high confidence seems warranted for µ, since it is consistently
within one voxel of the true boundary. This threshold places high confidence in the
estimates of boundary location for 1,152 out of 1,160 profiles (99.31%).

3.2. Core profile test data

Core profiles were tested on a 3D data set, 100 voxels cubed, consisting of 8-bit
voxels. The test target was chosen to simulate an ultrasound scan of a heart. It
consisted of an artificial sphere generated with a radius of 15 voxels within another
sphere of radius 30 voxels. The interior of the smaller sphere had a value of 32 (left
ventricular cavity) and an exterior value of 128 and this boundary will be called
the inner boundary. The larger sphere shared the same voxels as the exterior of the
smaller sphere creating a shell (myocardium) of value 128 and the exterior had a
value of 64 (background). This boundary will be called the outer boundary. This
test data is shown in Fig. 10(a).

Using the DoG gradient detector kernel, as described in Sec. 2.1.1, a total of
1,936 boundary candidates were found. The parameters for the size of the ellipsoid,
bin size, and footprint type were the same as in Sec. 3.1. Of the resulting 1,936
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(a)

(c)

(b)

(d)

Fig. 10. (a) Test data simulating a 3D ultrasound image of a heart. The smaller sphere is filled
with voxels of intensity 32 (LV), the ring is filled with voxels of intensity 128 (myocardium),
and the background is of voxel intensity 64. (b) The results of applying core profiles to the test
data overlaid on the data. The white dots correspond to the optimal boundary points for the
core profiles. The light gray dots represent the centers of the core profiles. (c) A cut-away view
exposing the centers of the core profiles. (d) The resulting core profiles without the test data.

profiles, 384 profiles were eliminated because they did not meet the constraints
defined in Sec. 2.1.4, leaving 1,552 profiles for analysis. In Figs. 10(b)–10(d), the
optimal boundary locations found by the profiles are indicated by the white dots.
For the remaining profiles, the measures of confidence for the classification param-
eters were calculated as derived in Sec. 2.5. There were a total of 98,771 boundary
comparisons and 10,110 met the requirements as discussed in Sec. 2.2.1 for core pro-
file formation. Figures 10(b)–10(d) show the core profiles by the location of their
centers, indicated by the light gray dots. The analysis of these core profiles can be
found in Sec. 3.2.2. Also, the accuracy of the gradient-oriented profiles for this new



December 5, 2001 12:30 WSPC/164-IJIG 00036

674 R. J. Tamburo & G. D. Stetten

test model is also measured to ensure that they perform in an effective, consistent
manner. These results are described below.

3.2.1. Measuring the accuracy of gradient-oriented profiles in the new
test model

Unlike the previous test data, the new test model contains two boundaries. How-
ever, the accuracy of the gradient-oriented profiles can be carried out the same
way as discussed in Sec. 3.1.1 if the population of the profiles is separated by their
estimation of the radius of the boundary. There were 280 profiles near the inner
boundary, and 1,263 profiles near the outer boundary. Figure 11 shows the distri-
bution of error in estimating the intensity values on either side of both boundaries
as a function of µ. Results are consistent with previous results showing that when
µ is near the center of the ellipsoid, profiles are able to estimate the intensity on
either side of the boundary better than when µ is located away from the center of
the ellipsoid.

From Eq. (14), the accuracy of the profiles in estimating the true boundary
location can be measured. Out of the 1,152 profiles, 1,488 (95.87%) were able to
estimate the location of a boundary within one voxel. The DoG detector had only
456 out of the 1,152 (29.38%) boundary points within one voxel of a boundary.
Figure 12 shows the error of all of the profiles in estimating the true location of the
boundaries as well as the error in estimating the true location of the boundaries
with the DoG detector.

The measures of confidence for the profiles parameters were calculated using
the methods described in Sec. 2.1.5. Plotting I1 versus z1 for the inner boundary
shows the error in estimating the inner intensity of the inner boundary. When z1 is
greater than 1.9, the error in estimating I1 is less than 7. With this threshold, 80%
of the inner boundary profiles can estimate I1 with high confidence. Plotting I1
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Fig. 11. Both graphs show the error in estimating intensities on either side of a boundary as a
function of µ. The center of the ellipsoid is zero. The left graph shows the error in estimating the
intensities on both sides of the inner boundary. The right graph shows the error in estimating the
intensities on both sides of the outer boundary.
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Fig. 12. Comparison of errors in estimating boundary locations with the DoG detector versus
gradient-oriented profiles. 95.87% of the total profiles as opposed to 29.38% of the total DoG
kernels can estimate a boundary location within one voxel.

versus z2 shows the error in estimating the outer intensity of the inner boundary. If
an intensity error of 8 is acceptable for estimating I1, 100% of the inner boundary
profiles can estimate I1 with high confidence.

Similarly for the outer boundary, plotting I1 versus z1 shows the error in estimat-
ing the inner intensity. A threshold of 1.1 on z1 accepts profile estimates (84%) of
the inner intensity of the outer boundary I1 to within 7. Plotting I1 versus z2 shows
the error in estimating the outer intensity of the outer boundary. A threshold of 1.6
on z2 permits 84% of the outer boundary profiles to estimate, with high-confidence,
the outer intensity I2.

3.2.2. Analysis of core profile population

Recall that core profiles can be described by two profiles its center point and its
scale. In the previous section, it was shown that the profiles composing core profiles
are able to accurately locate the true boundaries and estimate the intensities of the
test model for an ultrasound image of a heart. We now show that the center point
and scale of the core profiles created are consistent with the expected results. The
spherical nature of the data simplifies this analysis. The radius of a core profile is
defined as the distance from the center point of the core profile to the center of the
spheres. The center points of the core profiles should be near the center of the two
spheres or centered in the slab between the two spheres. Figure 13 shows the radii
of the core profiles, where the center of the spheres is zero and the midpoint of the
slab is 22.5 on the graph.
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Fig. 13. The distribution of center points of the core profiles. The center of the spheres is at 0
and the center of the slab between the spheres is at 22.5.

Many core profiles have their centers located very close to the midpoint of the
slab, but there is a significant spread for the centers of core profiles formed across the
spheres. This spread is expected because the gradients are not directed towards the
center of the spheres and the large scale of these core profiles. Core profiles formed
across the spheres should have a scale of either 30 or 60 voxels. Those formed across
the slab should have a scale near 15 voxels. Figure 14 shows that there are these
three populations of core profiles.
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Fig. 14. Distribution of core profile scale consistent with expected results.
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Table 1. An average core profile scale after sorting them by scale permits the

calculation of LV and myocardial volume. The true are found simply by using the
equation of a sphere and the known radii of the data.

LV Volume Heart Volume Myocardium Volume
Method of Calculation (voxels3) (voxels3) (voxels3)

Known Parameters of Data 14,137.18 113,097.50 98,960.28
Average Core Profile Scale 13,215.80 111,002.80 97,787.05
Percent Error 6.5175% 1.8520% 1.1856%

3.2.3. Measures of volume

The volume in the test data corresponding to the LV and myocardium can be
calculated with the known radii of the spheres making up the test data with the
equation for the volume of a sphere,

V =
4
3
πr3 . (15)

The volume of the LV is calculated using Eq. (15) with a radius of 15 voxels.
Likewise, the volume of the heart (LV and myocardium) is found with Eq. (15) and
a radius of 30 voxels. The volume of the myocardium is the difference between LV
volume and the heart volume. This is taken as the true volume measure because
two sphere radii parameterize this test model.

These volume measures are calculated using the scale of the core profiles. The
core profiles with a scale between 20 and 45 voxels are averaged and used to ap-
proximate the volume of the LV using Eq. (15). Similarly, the heart volume is found
with core profiles having a scale between 45 and 70 voxels and the volume of the
myocardium is the difference between these two measures. Table 1 contains a sum-
mary of these volume measures as well as an error measure (percent error) for the
volume calculated by the core profiles.

The volume measures found with average core profile scale were very accurate
compared to the known volumes. Calculating the volumes in this manner was pos-
sible because the radii of the spheres were known. In real data, volumes cannot be
calculated in this manner. Currently, more practical methods of volume calculation
are being developed based on labeling voxels according to the probability of being
within the region of interest and summing the weights of the voxels for a count of
the voxels within this region without explicitly defining a surface.

4. Conclusion

We have presented gradient-oriented profiles, a method of unsupervised boundary
parameterization suitable for classification. By operating along the direction of the
gradient vector, gradient-oriented profiles are insensitive to rotation. The cumu-
lative Gaussian provides estimates that parameterize the boundary by estimating
(1) extrapolated intensity values for voxels located far inside and outside of the
boundary, (2) anatomical boundary location, and (3) (although not yet validated)
blurred boundary width. Intrinsic measures of confidence have been shown to be
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capable of eliminating inaccurate parameter estimates. Thresholds placed on these
measures of confidence would allow classification of boundaries with high confi-
dence. Gradient-oriented profiles have proven capable of accurately parameterizing
the boundary in our test data.

To further demonstrate the application of gradient-oriented profiles to classifi-
cation, they will be applied to data containing noise. Also, more investigation is
warranted into the effects of (1) using neighborhoods with shapes other than an
ellipsoid, (2) using footprints with shapes other than a triangle, (3) altering bin
size along the gradient, and (4) altering relative size of the sampling neighborhood
compared to the DoG gradient kernel.

Gradient-oriented profiles have been applied to core atoms to enhance their
performance by (1) allowing the formation of core atoms by matching the intensities
on the medial sides of both boundaries, and (2) estimating the location of the
anatomical boundary. This newly constructed core atom is called a core profile.
Core profiles were applied to test data simulating 3D cardiac ultrasound data.
The performance of the gradient-oriented profiles used to construct the resulting
core profiles was tested with this new data demonstrating that profiles can parame-
terize multiple boundaries accurately. The performance of the core profiles was
consistent of expected results quantified by analyzing their center points and scales
and comparing them to the quantities calculated from the known parameters of the
test data. Core profiles were also shown to accurately measure the volumes of the
simulated LV and myocardium moving closer towards automated parameterization
of the LV boundary and measures of LV and myocardial volume in RT3D ultrasound
cardiac scans.
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