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Abstract.  Many modern forms of segmentation and registration require man-
ual input making it a tedious and time-consuming process.  There have been 
some successes with automating these methods, but these tend to be unreliable 
because of inherent variations in anatomical shapes and image quality.  It is to-
ward this goal that we have developed an automated method of generating 
landmarks for registration that will not require supervision or manual initializa-
tion.  We have chosen medial based image features because they have proven 
robust against image noise and shape variation, and provide the rotationally in-
variant properties of dimensionality and scale, which can be used by a unary 
metric.  We introduce a new metric for comparing the geometric relationships 
between medial features, which overcomes problems introduced by symmetry 
within a medial feature.  With these metrics, we are able to find correspon-
dences between pairs and triplets of features in the two images.  We demon-
strate these methods on three different datasets.  It is envisioned that this system 
will become the basis for generating medial node models that can be registered 
between two images.* 

1 Introduction 

For over a century, medical imaging has permitted doctors and other healthcare work-
ers to look beneath the skin’s surface to obtain critical diagnostic information.  In re-
cent years, computational techniques have been developed to assist clinicians with the 
analysis of medical images.  These techniques include methods for segmentation and 
registration.  Segmentation facilitates the extraction of interesting shapes and the es-
timation of shape parameters for characterizing disease by classifying regions in the 
image.  Registration is the process of aligning two or more images, valuable for su-
perimposing structures from different imaging modalities and conducting comparative 
studies of anatomy across a population. 

Many current forms of registration require manual input, making it a tedious and 
time-consuming process.  There have been some successes with automated methods, 
but these tend to be unreliable because of inherent anatomical variation, image noise, 
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and discontinuous object boundaries [1-3].  Our approach is to automatically generate 
landmarks based on medial features, and we are able to find correspondences between 
these landmarks in two images.  It has previously been shown that correspondences 
between image features can be found based on geometric constraints [4].  Our method 
is based on geometric constraints using cliques of medial features formed from rota-
tionally invariant metrics.  In this paper, we will show that similar objects in two im-
ages can be identified by sets of medial features and by the geometric relationships 
within these sets.  

2 Background 

A brief description of medialness, core atoms, and our methods to extract medial 
features is included in this section.  For a more detailed description see [5, 6]. The 
medial axis on an object, as defined by Blum for binary images, is the locus of centers 
of circles that are at least bi-tangent to the object boundary and fit entirely within the 
object [7].  Pizer et al. developed a measure called medialness to extend the medial 
axis to a medial manifold for gray-level images, where a distinct boundary is replaced 
by a measure called boundariness [8].  Many techniques for measuring medialness 
(including our own) link the aperture of the boundariness measurement to the radius 
of the medial manifold.  A ridge of medialness is called a core.  Methods using 
medialness have proven robust against image noise and shape variation [5, 6, 9, 10].  
There are several ways to locate the core.  We use core atoms because they are 
efficient, requiring only a single application to detect an object [5].  

2.1 Core Atoms 

The first step in the formation of core atoms is the collection of boundary points.  Any 
boundary detection algorithm can be used so long as it delivers gradient magnitude 
and orientation.  We have chosen to use a Differences of Offset Gaussian (DOOG) 
gradient detector[11] whose implementation is described in [12].  A core atom is 
formed from a pair of boundary points that meet the following requirements: 

 
1. The distance between the boundary points is within a specified range.  This dis-

tance is termed the scale, or diameter, of the resulting core atom and is defined as 

122,1 bbs −= , (1) 

where max2,1min ss ≤≤ s  and the expected diameter is between mins  and maxs .  

The vector 2,1s indicates the direction from the first boundary point location 1b  to 
the second boundary point location 2b  and the core atom is said to be “located” at 
the midpoint between the two boundary points.  Figure 1 illustrates a core atom 
created across an object of intensity 1I  against a background of intensity 2I . 
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2. The face-to-faceness, as defined in Eq. 2, of the constituent boundaries must be suf-
ficiently close to 1, while still allowing some variation in the relative orientations 
of those boundaries. 
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where in̂  (i = 1,2) is the orientation of the thi boundary point  (the “^” notation de-
notes a normalized vector). 

b1 b2

s1,2  

Fig. 1. A core atom consists of two boundary points separated by distance 2,1s  with 
a center point midway between the boundary locations. 

2.2 Extracting Medial Properties with Core Atoms 

Populations of core atoms can be analyzed for a measure of medial dimensionality.  
For 3D data, there are three basic core atom configurations; “koosh-ball,”  “spokes-
of-a-wheel,” and “bed-of-nails.”  The lower half of Fig. 2 illustrates these configura-
tions, where line segments represent core atoms.  Above each core atom configuration 
is the corresponding shape shown in dark gray and the core in light gray. 

 
Fig. 2. Top row shows basic shapes in dark gray with corresponding cores in light gray.  Below 
these are shown the corresponding basic core atom configurations (from left to right): “koosh-
ball,” “spokes-of-a-wheel,” and “bed-of-nails” (with core atoms shown as line segments). 

For a given population of core atoms, the orientation vectors can be statistically 
processed using eigenanalysis of their covariance matrix, to yield a measure of di-
mensionality and an overall estimate of orientation.  The eigenvalues 321 λλλ <<  
define the dimensionality of the core and the corresponding eigenvectors 1â , 2â , and 
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3â  define a coordinate system specific to the orientation of the core atom population.  
The eigenvectors are ordered such that 1â  is most orthogonal to the population of 
core atom vectors and 3â  is least orthogonal. The eigenvalues are greater than or 
equal to 0 and sum to 1.  A value of 0 indicates that the corresponding eigenvector is 
completely orthogonal to every core atom, indicating a direction along the core.  This 
is true for 1â  in a cylinder and 1â  and 2â  in a slab.  For the sphere, whose core is a 
point, no eigenvectors are orthogonal to every core atom.  Since the eigenvalues sum 
to 1, they can be viewed as a system with only 2 independent variables, which define 
a triangular domain called the lambda triangle (shown with results in Figs 6). The 
vertices the lambda triangle represent the three basic medial shapes (sphere, cylinder, 
and slab).  All possible sets of eigenvalues are bounded by the lambda triangle.   

We sample core atoms first on a regular spatial grid.  The core atom centers form a 
cloud around the true core, because of tolerance in the face-to-faceness.  Medial prop-
erties measured in samples that are displaced from the true core are prone to distor-
tion.  This may cause a misclassification of local dimensionality.  Further clustering 
of core atoms in adjacent samples overcomes this problem, using methods described 
by Stetten [5].  Each core atom population clustered in this manner is considered a sin-
gle medial node.  We define the location of a medial node as the center of mass of the 
corresponding core atom population, and the scale of the medial node as the average 
diameter of that population. 

3 Methods 

Finding correspondences between medial nodes in two images begins with the unary 
metric.  Let αΨ  be the set of all medial nodes in an N-dimensional image α .  For 
our applications thus far 3=N , but the approach applies to any 1>N .  The images 
are designated A and B, namely A=α  or B . 

3.1 Medial Node Unary Metric 

Given that core atoms have been constructed and clustered into nodes, and the di-
mensionality, scale, and orientation of each node has been determined, the unary met-
ric can be calculated between each node in AΨ  and each node in BΨ .  The unary 
metric quantifies the similarity between a pair of medial nodes, independent of orien-
tation, by their medial dimensionality and scale.  Recall that each medial node has ei-
genvalues Nii ,...2,1=   ,λ  and a scale σ .  From these quantities, the unary metric 

kj,µ  of node j in image A and node k in image B is calculated by 
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where ij,λ  and  ik ,λ  are the thi  eigenvalues for node j  and k  respectively, and jσ  

and kσ  are the corresponding scales.  Only the first 1−N  eigenvalues are needed 
because only that many are independent. 

The unary metric has a value between 0 and 1, where 0 indicates identical nodes.  
All of the metrics found between AΨ  and BΨ  are stored in a unary correspondence 
matrix.  This matrix is AM x BM  in size, where AM  and BM are the numbers of me-
dial nodes in image A and B respectively.  The unary correspondence matrix thus 
stores the similarity between every node in image A and every node in image B.   

3.2 Medial Node Signature Metric 

In this section, we will define the signature metric, to be used in conjunction with the 
unary metric.  We will use the signature metric to find correspondences between simi-
lar pairs of medial nodes, also called 2-cliques, in two images.  This metric produces 
two unique signatures for each pair of medial nodes in an image, one signature from 
the perspective of each node in the pair.  The signature metric is used to find corre-
sponding pairs in another image. 

Consider a pair of medial nodes in an image. Given the eigenvectors 
Nii ,...2,1ˆ =  ,a  of node 1, the relative location of node 2 can be expressed in the co-

ordinate system of node 1 as 

( )∑
=

=
N

i
iij vd

1
jâ , 

(4) 

where ( )
ijâ  is the thi  component of eigenvector j  and v is the displacement from 

node 1 to node 2 in the global coordinate system.  We further define d̂ as the normal-
ized vector  

d
dd =ˆ , 

(5) 

which expresses the direction to node 2 from node 1 in the coordinate system defined 
by the eigenvectors of node 1.  We will refer to the square of the normalized compo-

nent ( )2ˆ
id  as the ith Normalized Component Squared (NCS) of d̂ . 

A metric to express the similarity between node pairs should ignore symmetry in 
node 1 in terms of the location of node 2 (and vice versa).  Such symmetry results 
only when two of node 1’s eigenvalues are approximately equal.  The signature for 
node 1 is defined as the cumulative NCS function, with the NCS for each component 
of d̂ (along a given eigenvector iâ ) being added at its corresponding eigenvalue, 

( ) ( ) ( )∑
=
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N
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ii uds
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where  ( )⋅u is the unit step function. 
Since the eigenvalues are positive, ( ) ,0=λs for 0<λ .  In effect, ( )λs  is a series 

of steps at each of the eigenvalues, the height of each step being equal to the corre-
sponding NCS.  If two or more eigenvalues are equal, their steps superimpose into a 
single NCS in the degenerate subspace defined by the corresponding eigenvectors.  
By the Pythagorean Theorem, the total step size in such a case is independent of arbi-
trary rotation within the degenerate subspace.  Also by the Pythagorean Theorem, the 
total of all the steps is ( ) 11 =s .  

a. b. 
Fig. 3. a) Signature of cylindrical node 1 paired with node 2 at the “equator” of node 1’s coor-
dinate system.  b) Another node pair also with an “equatorial” node 2, but a different orienta-
tion of node 1’s eigenvectors within the degenerate subspace.  

Typical signatures are shown in Fig. 3 for a pair of nodes where node 1 is almost 
perfectly cylindrical (recall that 01 =λ , 5.02 =λ , and 5.03 =λ  for a perfectly cylin-
drical node).  In each pair, the second node is at the “equator” of the first node’s 
coordinate system, but there is arbitrary rotation of the eigenvectors within the 
degenerate subspace around the axis of the cylinder.  The two signatures vary along a 
very short segment of the λ -axis, and so are very similar.  In Figure 4, we show 
signatures from the same cylindrical node 1, but this time with node 2 located not at 
the equator, but at 45° “latitude.” 
 

a. b. 

Fig. 4. a) Signature of cylindrical node 1 paired with node 2 at 45° “latitude” of node 1’s coor-
dinate system.  b) Another equivalent node pair, as in Fig 3b. 

Let us look in more detail at the claim that a signature is independent of the global 
orientation of a node pair.  A medial node will produce eigenvectors that depend on 
orientation with respect to the cardinal coordinate system.  However, the eigenvalues 
are independent of that orientation.  When two or more eigenvalues are equal, a de-
generate subspace exists that may be expressed by matrix A  whose columns are the 
corresponding eigenvectors ia[A ˆ=  jâ ...] . 

Rotating a node pair within the subspace defined by the degenerate eigenvectors of 
node 1 will redefine the eigenvectors as ie[E ˆ= jê ...] RA= , where R  is a pure rota-
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tion matrix.  The cumulative NCS between node 1 and node 2 will remain unchanged.  
We demonstrate this for the case of two eigenvalues being equal.  Rotation within the 
degenerate subspace is represented by 

jij

jii

aae

aa    e
ˆˆˆ

ˆˆˆ

αβ

βα

+−=

+=
, 

(7) 

where 122 =+ βα .  The NCS for the two eigenvalues will add to the signature at the 
same location on the λ  axis, namely, ji λλ = , because the unit step functions will 
fuse into a single unit step function, whose height is 

( ) ( )22 ˆˆ
ji dd +  (8) 

By the Pythagorean Theorem, the quantity ( ) ( )22 ˆˆ
ji dd +  represents the squared 

length of the hypotenuse, namely, the component of v̂  in the plane defined by the ei-
genvectors.  This quantity is a constant, independent of which coordinate system was 

used to calculate it.  This can be proven by calculating ( ) ( )22 ˆˆ
ji dd +  in terms of E  and 

A , and showing them to be equal. 
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(9) 

Given two medial node pairs in different images, a signature metric of similarity 
from node 1 to node 2 can now be defined as  

( ) ( )[ ]∫ −=
1

0

2
212,1 λλλ dssM , 

(10) 

where 10 2,1 ≤≤ M .  A value of 0 indicates identical signatures. The integral in Equa-
tion 10 can be computed efficiently as the area of a series of rectangles by first sorting 
the union of the two sets of eigenvalues from least to greatest, assigning a new index 
from Nh 20 <≤  to each eigenvalue.  The signature metric 2,1M  is then calculated 
by going through this set of N2  eigenvalues 
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where 1=κ  for eigenvalues from node 1 and 1−=κ  for eigenvalues from node 2. 
This yields the same result as the continuous integral in Equation 10. 
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Cross-image node pairs are said to correspond if (1) the unary metrics for the indi-
vidual nodes are within tolerance, (2) the distance between nodes for each pair is suf-
ficiently similar, and (3) both signature metrics (from node 1 to node 2 and vice 
versa) are also within tolerance.   

3.3 Medial Node Triplets 

Correspondences between cross-image node pairs may not be specific enough.  
Therefore, we introduce correspondences between medial nodes triplets.  Greater 
specificity of medial node correspondences can be achieved if the geometric configu-
ration between three nodes is considered.  The grouping of three medial nodes into a 
medial node triplet or 3-clique is shown in Fig. 5.   

image A image B

nA, 1

nA, 2

nA, 3

nB, 1

nB, 2

nB, 3

LA LB

θA θB

 
Fig. 5. Triplets from two images. Each vertex is a medial node, where  jn ,α  denotes the thj  

node of the triplet in image α . 

Correspondences between triplets are implied from corresponding node pairs if the 
difference in angles between them is within a pre-determined threshold.  For example, 
in Fig. 5, suppose node pairs ( )2,1, , AA nn  and ( )3,1, , AA nn  make up a triplet in image A 
and node pairs ( )2,1, , BB nn  and ( )3,1, , BB nn  make up a triplet in image B.  These two 

triplets correspond if τθθ <− BA , where τ  is a pre-determined tolerance. Alterna-
tively, distances AL  and BL  may be used.  

4 Results 

Three sets of data were used to demonstrate the ability of the unary and signature met-
rics to identify node correspondences.  We first used an 8-bit, three-dimensional com-
puter generated dataset consisting of two concentric ellipsoids.  Voxels within the in-
ner ellipsoid had an intensity of 255 and voxels between the inner and outer ellipsoid 
had an intensity of 128. 
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image Bimage A

image Bimage A image C

image D

 
Fig. 6. a) A node within the inner ellipsoid of image A is selected.  b) The corresponding nodes 
in image B are highlighted. c) A node between the ellipsoids of image A is selected.  d) The 
corresponding nodes in image B are highlighted. e) A triplet is selected in image C.  f) The cor-
responding triplet is highlighted in image D. g) The lambda triangle designates dimensionality 
as a function of eigenvalues 1λ  and 2λ .  Arbitrary thresholds placed on 1λ  and 2λ  ( 51=ρ  
and 31=γ ) divide the triangle into 3 compartments, which permits dimensionality to be 
color-coded for visualization purposes. 

Eyeballs
 Desired
   Node

  Corresponding
          Nodes

image A image B  
Fig. 7. MRI brain data shows that selecting a node in an eyeball of image A, will highlight cor-
responding nodes in both eyeballs of image B. 

Correspondences between individual nodes were found between these two images 
using the unary metric.  Figures 6a through 6d show slab-like medial nodes (core at-
oms that form between the ellipsoids) as red lines and cylindrical medial nodes (core 
atoms that form across the inner ellipsoid) as green crosshairs, following the color-
coding shown in the lambda triangle in Fig. 6g.  In Fig. 6a, a node within the inner el-
lipsoid is selected (yellow crosshair) and the corresponding nodes are shown in Fig. 
6b.  In Fig. 6c, a node between the ellipsoids is selected (yellow line) and the corre-
sponding nodes are shown in Fig. 6d.  As expected only similar nodes are highlighted 
but there exists more than one corresponding node.  This demonstrates the utility of 
the unary metric as well as the need for further specificity using node cliques. 

The signature metric was demonstrated on two concentric ellipsoids, the second el-
lipsoid rotated by 90°.  Figure 6e shows a selected node triplet (purple lines) and Fig. 
6f shows the only properly corresponding node triplet.  Mentally rotating the image 
superimposes the corresponding nodes.   
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The unary metric was applied to simulated MRI brain images (See Fig. 7).  Image 
A and image B were randomly generated by the MRI simulator at BrainWeb[13].   Im-
age B was also non-rigidly deformed.  The eyeballs are easily identifiable, because 
their roughly spherical nature is detected as a cylinder.  Cylindrical nodes were found 
in both the eyeballs.  Figure 7 shows that a node in one eyeball of image A was se-
lected and corresponding nodes are highlighted in both eyeballs in image B.  We are 
presently applying the signature metric to such image data. 

5 Discussion 

We have developed a novel method to automatically identify correspondences be-
tween medial based image features.  The founding metrics were demonstrated to be 
rotationally invariant and able to locate basic shapes.  It is envisioned that this system 
will become the basis for a means to generate medial node models automatically from 
a training set, to capture shape variability and locate, as well as measure, objects in a 
set of images containing similar objects.  Useful classification of objects could be 
achieved based on these correspondences.  Potential applications include time series, 
cross-subject, and multi-modal image analysis. 
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