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INTRODUCTION

The recent development of high resolution ultrasound (HRUS) has
allowed for the imaging of individual nerve fascicles, which introduces
a realm of new possibilities for the monitoring of nerve regeneration
and regrowth following peripheral nerve injury (PNI) or vascularized
composite allotransplantation (VCA). A rapid, non-invasive, and
inexpensive procedure afforded by HRUS to objectively diagnose
repair and regrowth of nerves would be a significant step forward in
studying and providing treatment to these patients. In order to
achieve this, a way to reliably identify and quantify fascicular
structures must first be developed.

We seek to provide a rapid yet effective method towards
segmentation that lends itself to parallelization through GPU
technology. In this particular application, the target is identification of
fascicles in 2D and 3D high resolution ultrasounds (HRUS) of the
median nerve at 50 MHz as part of a new system combining video
from a probe-mounted camera with ultrasound data to monitor the
progression of blood vessels and nerves after reconstructive surgery.
We believe that our method will be effective despite the challenges of
segmenting ultrasound data: high noise, incomplete boundaries, and
computationally expensive data sets.

The method involves three parts: formation of pixel clusters (patches),
identification of boundary points and medial points, and
segmentation by grouping.

FORMATION OF PIXEL CLUSTERS

We begin by constructing patches of homogeneous pixels using a
directed graph of edges between neighboring pixels in order to
reduce noise and subsequent computational cost while preserving
meaningful structures. Pixel intensity as well as variance are factored
into a descending variance graph, where the variance and mean are
calculated within a sphere of radius r centered at the pixel. Each pixel
points to the neighbor with the lowest magnitude of the ratio of
difference in intensity to difference in variance, and the pixels in the
corresponding disjoint trees set their intensities to the mean of the
root pixel (Figure 1).

Figure 1. Construction of patches in 2D nerve image. (A,B,C) Original
image of median nerve, image at radius 1 (pixel), and image at radius 3,
respectively.

IDENTIFICATION OF BOUNDARY AND MEDIAL POINTS

Following construction of the new patches, we seek to describe the
structures within the image while keeping the size of the data set
within an order of magnitude of the patches. Each patch finds the
point where a line drawn between its root and the root of a bordering
patch intersects the boundary between them (Figure 2).

Figure 2. The red object is the patch in
question, the blue objects are the
neighboring patches, and the red and
blue points are the roots of the objects,
respectively. The boundary points
identified by our approach are the black
points, which represent the intersection
between the line and the boundary.

Given this set of boundary points, we find medial points that lie
equidistant from any two boundary points within a desired range of
distances (Figure 3). For these medial points to form, the patches that
the lines between the medial point and its two boundary points
intersect must also meet a minimum threshold for homogeneity.
Thus, medial points are a measure of association: the more medial
points formed by the same pair of boundary points, the stronger the
association between those boundary points.

Figure 3. The red, blue, and green
points represent individual boundary
points while the red, blue, and green
circles are shells of equal radius that
have been formed around each of these
boundary points, respectively. The black
points in this diagram are the potential
medial points, which are the
intersections of these shells.

SEGMENTATION BY GROUPING

Utilizing this, boundary points are clustered into mutually exclusive
boundary point sets through two steps. In the first step, the boundary
points form a sparse graph, G'(N ', E' ), by forming an edge from each
boundary point (N ') with its highest n associated boundary points,
where n is user-defined. In the second step, the sparse graph is
converted into a set of disjoint subgraphs by having each point form
an edge to the point with the highest degree within a walk of length d,
where d is user defined; all pre-existing edges are severed. The final
step involves matching patches to boundary point sets by having each
medial point within a patch vote for a boundary point set only if that
set contains both of the boundary points associated with that medial
point.

RESULTS

Figure 4. Segmentation
of 2D ultrasound of
nerve. (A,B) Original and
segmented image of
nerve. Fascicles are
black structures with
white borders. Compute SRS S
time for a 256 x 256 [
image was <1 second.

Figure 5. Segmentation of reconstructed 3D ultrasound of median nerve.
(A,C,E) Three consecutive slices in original image of median nerve. (B,D,F)
Corresponding segmentations of A,C, and E, respectively. Fascicle
continuity is shown. (G) Slice of original image of median nerve at more
distant location from slices in A,C, and E. (H) Corresponding segmentation
of G. Fascicle continuity is still observed. In all images, fascicles are
identified as black objects with white borders. Computation time for a 256
x 256 x 18 image was < 7 seconds.

CONCLUSIONS

Our method has demonstrated effective segmentation of the median
nerve in 2D and 3D in HRUS ultrasound data, with rapid computation
times due to GPU implementation. Further optimization and
development of these routines hold promise for our application of
combining ultrasound analysis and video navigation in real time.



