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Abstract

The volume contained within any closed, simple, piece-wise smooth boundary can be
determined by integrating over the boundary a function whose only parameters are the principal
boundary curvatures and the distance to the medial manifold.  The method is an extension of the
common concept of mining rights, by which the interior of the earth is parceled out to patches of

real estate on the surface.  This concept can be extended to any object in ℜm  for m ≥ 2
independent of topological genus, yielding a one-to-one mapping between the boundary and the
interior, which can be used to compute properties such as volume.

Introduction

The relationship between an object's interior and its boundary is of fundamental concern in
geometry, and provides an approach by which properties of the object's interior, such as its

volume, can be determined from its surface.  Since an m -dimensional object has an m −1( )-
dimensional boundary, the boundary may provide a more convenient domain for such calculations
than the interior.  One may determine a 3D object's interior volume (or a 2D object's area) by
establishing a one-to-one mapping between its surface (or boundary contour) and its interior -- the
mining rights, as it were -- and then integrating these rights over the entire surface.  Vectors normal
to the surface separate the mining rights between neighboring portions of the surface, just as stakes
driven into the ground separate the claims of neighboring miners.   At the very center of the earth
the mining rights transfer to the other side of the planet.  The center of the earth is just a special
case of the locus of points for any shape called the Blum medial manifold.

Brief Review of Blum Medial Manifold

For closed contours in ℜ2, the Blum medial manifold is that locus of the centers of all
circles completely enclosed by the boundary contour that touch the contour in more than one
location [1].  Thus for the rectangle in Fig. 1, the centers of all such medial circles form the
branching medial manifold shown as thick dotted lines.

medial
circle

Fig. 1.    The Blum medial manifold of a rectangle (thick dotted lines) is the locus of
centers of all medial circles, i.e., those circles lying completely within the rectangle that touch the

boundary in at least 2  places.
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For objects in ℜ3, the Blum medial manifold is the locus of all spheres completely
enclosed by the boundary surface that touch the surface at more than one location [2, 3].   For m -

dimensional objects, the generic medial manifold has m −1( ) dimensions, although fewer

dimensions are possible in non-generic cases.  In ℜ3, for example, although the generic medial
manifold has 2 dimensions, the medial manifold of a cylinder may contain portions that collapse to
1 dimension.  For a sphere, the medial manifold has zero dimensions, i.e., that point at the center
of the earth.

Volume of Symmetrical Figures by Integration of "Mining Rights"

Corporations that extract minerals and oil divide the planet into wedge-shaped pieces
extending straight down from any parcel of real estate to the center of the earth, as shown in Fig
2a.  This approach conceptually permits the measurement of the earth's volume by summing the

a b c

d e

Fig. 2    Examples of 3D objects with simple shapes.  The "mineral rights" for a surface patch are
shown in each case extending orthogonal from the surface half-way through the object to

the opposite side.
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mining rights for each patch of the earth's surface, since these rights completely fill the earth but do
not overlap.  This same approach could be used to establish the volume of a hypothetical
cylindrical planet, by extending mineral rights from the surface of the cylinder down to its central
axis, as shown in Fig. 2b.   A one-to-one correspondence exists between the surface and the
interior volume that can be used to compute the volume from the surface.  In these two object -- the
sphere and the cylinder -- the mineral rights converge on the medial manifold of the object, being
the central point of the sphere and the central axis of the cylinder (forgetting for now the ends of
the cylinder).  Beyond the medial manifold the mining rights belong to the other side of the object.

The manner in which mining rights intersect the medial manifold is governed in part by the
principal curvatures of the surface (for a review of principal curvature, see [4]).  Consider again
the square patch on the surface of the sphere (Fig. 2a) and the lines orthogonal to the surface
running straight down from the four corners of that patch to the center of the sphere.  They meet
precisely at the center because the two principal curvatures of the surface are equal and constant
everywhere.   The square patch on the surface of a cylinder (Fig. 2b) produces four straight lines
orthogonal to the surface that reach the central axis in two parallel pairs, forming a wedge cut from
a disk like a piece of cheese.  This happens because one of the principal curvatures is constant
while the other is zero.

Next consider the pear-shaped object in Fig. 2c.  Like the cylinder, the pear's medial
manifold contains a line along the central axis, although now the 2 principal curvatures on the
surface patch are neither zero nor equal.  For the hyperbolic surface patch shown in Fig. 2c, the
principal curvatures have opposite signs.  The mining rights are still easily defined by extending
straight lines orthogonal to the surface from the 4 corners of the patch to the medial manifold to
from a wedge that widens at its cutting edge like the blade of an ax.  Such wedges would fill the
space within the pear and would not overlap, and thus could still be used to compute the volume
from the surface, exactly as before.

Fig. 2d shows a somewhat different case in which the borders of the mining rights do not
converge at the medial manifold.  In this flat slab the 2 principal curvatures of the surface are both
zero, and the borders of the mineral rights for the surface patch extend in parallel to the medial
manifold.  Half-way through the slab those rights are simply transferred to the opposite side.  Fig.
2e shows a curved slab with various unequal principal curvatures and a surface patch with its
mining rights extending down to the medial manifold.  In all these cases it should be clear that the
total volume can be found by summing the volumes of the individual mining rights.

Consider now the closed boundary contour of the 2D object depicted in Fig. 3a.  At each

boundary point a coordinate system can be defined consisting of the unit 1 tangent vector  t̂  and

the unit normal vector n̂ .  As can be seen in Fig. 3b, a step along the boundary of length ∆s  can

be approximated by the vector ∆s ⋅ t̂ .   The vector F ⋅ n̂  establishes the center of the osculating
circle, being that circle which shares the tangent and the curvature with the boundary.  The focal
length F  is the radius of the osculating circle, and the inverse of the boundary's local curvature.
The mining rights of the boundary segment ∆s  fall within a sector formed by two such radii of the
osculating circle.  At some point within that sector, the mining rights may be transferred to the
opposite boundary.  It is worth noting here that any straight line entering an object orthogonal to its
surface must intersect the medial manifold before exiting the other side.

1  The '^' symbol denotes normalization of the vector.
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t̂
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F

osculating
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∆s⋅ t̂

a

∆s

Fig. 3    a. Local coordinate system with t̂   tangential to, and n̂  normal to, the object's
boundary.    b.  Osculating circle with radius F , and a sector of that circle

corresponding to boundary interval ∆s .

Area of an arbitrary 2D shape

We now develop a mathematical expression for the area of any closed smooth object in ℜ2

as a function of the boundary curvature and the distance to the medial manifold.  First consider a
section of boundary that is convex, that is to say F  is positive, as shown in Fig. 4a.   The medial
manifold (thick dotted line) is shown at a distance R from the boundary.  R is the medial scale, the
radius of the medial circle (see Fig. 1), while F  is the radius of the corresponding osculating
circle.   The mining rights, approximated by the trapezoidal area ∆A, consist of a sector of the
osculating circle truncated at the medial manifold.

The relationship between the medial circle and the osculating circle is central to this paper.
Since the medial circle must lie completely within the object, it cannot be larger than the
corresponding osculating circle.  Therefore, R ≤ F , and at some point along the sector of the
osculating circle (perhaps only at its vertex, if R = F ) the sector intersects the medial manifold
and the mining rights are transferred to another location on the boundary also touched by the
medial circle.
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Fig. 4     a.  Convex boundary segment (thick solid line) and corresponding medial manifold
(thick dotted line) at a distance R from the boundary ( F > 0 ).  Area ∆A approximates the

"mining rights" of boundary interval ∆s .         b.  Same for a concave boundary segment
( F < 0).

Now consider the convex boundary segment shown in Fig. 4b.   Here the focal length F
is negative, and the distance to the medial manifold R can assume any positive value.  This would
also be true for a straight boundary segment, for which  F = ∞ .   Whether concave, convex, or
straight, in all cases the area of the trapezoid ∆A can be found by integrating the height of the

trapezoid ∆h  as a function of the distance r  along the n̂  axis, where

∆h = 1− r

F




 ∆s . (1)

As ∆s → 0 , the infinitesimal area dA corresponding to the mining rights of the infinitesimal
boundary interval ds may therefore be expressed as
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dA = 1− r

F




 dr

0

R

∫




ds . (2)

The total area A  of the object can be found by integrating dA over the entire boundary contour
S , assuming convergence of ∆A on the actual mining rights (see below).

A = dA
S
∫ (3)

Several examples are illustrative here.  First, consider a circle of radius R.  The constant
curvature of the boundary guarantees that R = F  everywhere, so the area dA  corresponding to
the segment ds can be found by substituting into Eq. (2) to yield

dA = r − r2

2R







ds
0

R

= R

2
ds (4)

Integrating dA over the boundary contour S  of the circle, whose length is 2πR  where R is
constant, yields the correct area.

A = R

2S
∫ ds = πR2 (5)

Fig. 5     Rectangle with mining rights extending in thin ribbons from the boundary to medial
manifold.

Another example is shown in Fig. 5.  This rectangle serves to demonstrate the special case
of the straight boundary segment, whose focal length F = ∞ .  In this case, substitution into Eq.
(2) yields
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dA = 1− r

∞




 dr

0

R

∫




ds = R ⋅ ds (6)

Thus, for a straight boundary segment, dA represents an infinitesimally thin stripe orthogonal to
the surface extending to the medial manifold along the radius of a medial circle.  The rectangle is
completely filled by such stripes, which are able to reach every portion of the interior.  There can
be no intervening branches of the medial manifold producing unreachable portions of the interior,
since any such branches would represent a medial circle completely enclosed within another medial
circle.   This is impossible because each medial circle must touch the boundary in more than one
location.  Since the boundary is piece-wise smooth, the integration around it can be accomplished
by sections that contain no sharp corners.  Alternatively, the corners can be viewed as non-zero
(but very small) minima in the  focal length F , in other words, not really corners but simply
maxima in the allowable curvature of a smooth boundary.

boundary
surface

medial
manifold

∆s

∆s

R

F2

F1

∆h1

∆h2

n̂

t̂ 1 t̂ 2 r

Fig 6.      In ℜ3 the mining rights of a surface patch form an osculating wedge truncated at the
medial manifold.

Volume of arbitrary shapes in 3 or more dimensions

The same approach can be applied to finding the volume of an object from its boundary in

ℜ3.   All that is required for each patch of boundary surface is knowledge of the distance R to the
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medial manifold and the focal lengths F1 and F2  of the osculating disks corresponding to the two

principal curvatures (see Fig. 6).  Whereas a single tangent t̂  and interval ∆s  suffice to describe

the boundary contour in ℜ2, two orthogonal principal directions t̂1  and  t̂2  and a surface patch

of area ∆s( )2
 are required to describe the boundary surface of an object in ℜ3.   Given such a

surface patch,  the mining rights between the surface patch and the medial manifold can be found

by integrating the area ∆h1 ⋅ ∆h2( ) as a function of distance r  along the n̂  axis, within an
osculating wedge truncated by the medial manifold, where

∆hi = 1− r

Fi







∆s      i = 1,  2 (7)

As ∆s → 0  the infinitesimal volume dV  corresponding to the mining rights for the infinitesimal

boundary patch ds2 may be expressed as

dV = 1− r

F1







1− r

F2







dr
0

R

∫








ds2 (8)

The particular wedge shown in Fig. 6 does not converge to a point, but rather to a blade, since
evidently for this surface patch F1 ≠ F2.  The focal length F1 corresponds to the principal

curvature in the t̂1  direction, and F2 to the principal curvature in the t̂2  direction.   By the same

arguments given above for osculating and medial circles in ℜ2, any focal length corresponding to
a convex principal curvature limits R as follows:

Fi ≥ R  
f > 0

    i = 1,2 (9)

The wedge must intersect the medial manifold, or at least make contact with it, within the smallest
convex focal length.

The total volume V  can be found by integrating dV  over the boundary surface A .

V = dV
A
∫ (10)

again assuming convergence.
Consider an example in 3D.  A sphere of radius R  has constant principal curvatures

R = F1 = F2  so that, by substituting into Eq. (8), the infinitesimal volume dV   corresponding

to the infinitesimal surface patch ds2 is
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dV = r − r2

R
+ r3

3R2







ds2

0

R

= R

3
ds2 (11)

Integrating everywhere on the surface A = 4πR2, where R is constant, yields the correct
volume for a sphere of

V = R

3A
∫ da = 4

3
πR3 (12)

In the general case of m  dimensions, the hypervolume V  can found by integrating  dV
over the m −1( ) dimensional boundary, where

dV = ∏
i=1

m−1
1− r

Fi





0

R

∫ dsm−1dr (13)

Thus dV  is a "hyper-wedge" truncated at the medial manifold for the infinitesimal boundary patch

dsm−1, where Fi   is the focal length corresponding to the ith principal direction on the
hypersurface.

The topological genus of the object makes no difference, since the method relies on the
purely local relationship between the surface and the medial manifold.  For example, one can
imagine summing the mining rights for a torus, which is locally indistinguishable from a cylinder.

boundary

medial
manifold

area error areaε

θ

error areaω

r
v

∆A

F R

n̂

t̂

∆s⋅ t̂

Fig. 7      Potential errors in the calculation of ∆A for a concave boundary segment.
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Do the errors vanish?

The issue of convergence bears examination.  Assume parametric descriptions of both the

boundary and medial manifold are known.  Consider an object in ℜ2.  Shown in Fig. 7  is a
concave boundary segment and corresponding medial manifold.  The concave boundary was
chosen for this illustrations since it magnifies the area of error ε  between the medial manifold and
the edge   

r
v of the trapezoid ∆A.  A second area of error ω  is shown between the boundary

contour and the boundary tangent ∆s ⋅ t̂ .   Clearly ω ∆A → 0  as ds → 0, so ω  can be

ignored in the limit.   The error ε  cannot so easily be ignored, however, since   
r
v is generally not

tangential to the medial manifold.    The area ε  as ∆s → 0  can be approximated for a concave
boundary as

  
lim ε
∆s→0

=
r
v 2 tanθ

2
= ∆s( )2 F + R

F






2 tanθ
2

   
F < 0

(14)

and for a convex boundary segment as

lim ε
∆s→0

= ∆s( )2 F − R

F






2 tanθ
2

   
F > 0

(15)

which simplifies for a straight boundary segment to

lim ε
∆s→0

= ∆s( )2 tanθ
2

   
F = ∞

(16)

In all cases, ε → 0 as ∆s( )2
 and thus the error ε  vanishes in the computation of the total area

A  as ∆s → 0 , except whereθ → π 2 and tanθ → ∞ .  This occurs when the radius vector

  
r
r = R ⋅ n̂ intersects the medial manifold tangentially, which can be divided into two special cases.

medial
manifold

boundary

r
r

n̂

t̂

Fig. 8      Singular case for convex boundary.
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First, consider the case for a convex boundary segment (see Fig. 8).  In this case the
medial manifold is tangential to   

r
r  at their intersection only for a local minimum in R along the

boundary, i.e., a smallest osculating circle, where R = F .    This in turn implies that   
r
v  in Fig. 7

has zero length and Eq. (14) mandates that ε = 0.

r
r

s1

n̂

t̂

Fig. 9      Singular case for concave boundary.

Next consider the case for a concave boundary segment.   The phenomenon of   
r
r  being

tangential to the medial manifold at their intersection can only occur at a boundary point such as  s1
in the Fig. 9.   The corresponding medial location is an end of the medial manifold, and there must
be at least two other contacts between its medial circle and the boundary.  Thus it must represent a
branch point in the medial manifold, and the branches must extend in such a way as to block the
expanse of error area ε , reducing the situation to the case depicted in Fig. 7, where θ ≠ π 2
and tanθ  is finite.   The same argument can be applied to the case of the flat boundary.

In higher dimensions ℜm , for m > 2, each ∆s( )m−1
 patch of the boundary has only

one radius vector   
r
r , but m −1( ) principal curvatures.  Each principal curvature Fi   has its own

angle θi  with respect to the medial manifold.   For a given Fi  the degenerate case θi = π 2 may

produce a sub-manifold on the boundary of up to m − 2( ) dimensions in which one of the two
cases in Figs. 8 and 9 apply.  In all cases the errors in the calculated volume will vanish as
∆s → 0 .

Discussion

The method presented here uses the medial manifold to resolve ownership between
boundaries across the object, and boundary curvature to resolve ownership between adjoining
portions of the boundary.  The resulting osculating wedges, truncated by the medial manifold, map
each portion of the boundary to a unique portion of the interior.   The boundary of an m -
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dimensional object has only m −1( ) dimensions and thus may present advantages in the practical
problem of determining the volume of an object.  While it is true that the medial manifold also has

only m −1( ) dimensions, it displays a more complex relationship with the interior, since a single
location on the medial manifold may correspond to multiple locations on the boundary.

The truncated wedges bear some resemblance to Green's and Stokes' theorems, which
relate an object's boundary to its interior by integrating a function of some underlying field [5].
Eberly and others have followed this approach, viewing the boundary as a level curve of some
function whose value is greater inside the object than a threshold at the boundary [6, 7].   The
truncated wedges depend, instead, on a purely geometric relationship, with a deeper connection to
other geometric processes such as Delauney triangulation and Voronoi diagrams, by which the
interior of a shape may be assigned to its nearest boundary and thereby broken into subunits with
simpler geometric properties [8].

Any practical application of truncated wedges will depend upon prior determination of the
distance to the medial manifold, which is a non-trivial problem.  Several recent developments hold
promise.  Culver finds the medial manifold from a polygonal surface using a Voronoi approach
[9].  Fritsch has developed Deformable Shape Loci to adapt a medial model to fit objects in gray
scale data [10].  Furst has devised methods of tracking ridges of medialness in gray scale data
[11].  Stetten has developed methods of describing the medial manifold statistically in gray scale
data [12, 13].

The practical application of truncated wedges will also depend upon the determination of
local boundary curvature.  For sampled boundary representations, boundary curvature is a function
of scale.  This suggests that a course-to-fine approach might provide estimates of volume at
varying levels of precision.  Medial approaches can determine an appropriate scale, and stabilize
boundary parameters such as curvature, by permitting the proper ordering of boundary points [14].

For any of these methods, errors may arise in the subsequent volume calculation beyond
those that vanish in the theoretical treatment above.  Further problems may arise in parameterization
of the boundary itself, to perform the integration of volume.  While parameterization of a closed

contour in ℜ2 is straightforward, it can be problematic for boundaries in higher dimensions.
Besides calculating volume, the truncated wedges approach may provide a basis for

techniques such as finite element analysis that depend upon compartmentalizing the interior of an
object, and which may encounter problems when distorting the standard rectilinear coordinate
system to match an object's shape.  These problems might be avoided by using truncated wedges
for compartmentalization.

Summary

A simple relationship exists between the volume, the boundary curvature, and the distance
to the medial manifold for objects with m ≥ 2 dimensions, piece-wise smooth boundaries, and
any topological genus.  The relationship generalizes the concept of mining rights, allowing the
interior to be mapped from the surface, for the purpose of calculating volume and possibly
determining other properties the object.
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