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ABSTRACT 

We have developed a new framework for analyzing images called Shells and Spheres (SaS) based on a set of spheres 
with adjustable radii, with exactly one sphere centered at each image pixel. This set of spheres is considered optimized 
when each sphere reaches, but does not cross, the nearest boundary of an image object. Statistical calculations at varying 
scale are performed on populations of pixels within spheres, as well as populations of adjacent spheres, in order to 
determine the proper radius of each sphere. In the present work, we explore the use of a classical statistical method, the 
student’s t-test, within the SaS framework, to compare adjacent spherical populations of pixels. We present results from 
various techniques based on this approach, including a comparison with classical gradient and variance measures at the 
boundary.  A number of optimization strategies are proposed and tested based on pairs of adjacent spheres whose size are 
controlled in a methodical manner.  A properly positioned sphere pair lies on opposite sides of an object boundary, 
yielding a direction function from the center of each sphere to the boundary point between them.  Finally, we develop a 
method for extracting medial points based on the divergence of that direction function as it changes across medial ridges, 
reporting not only the presence of a medial point but also the angle between the directions from that medial point to the 
two respective boundary points that make it medial.  Although demonstrated here only in 2D, these methods are all 
inherently n-dimensional. 

1. MEDIAL RIDGES IN IMAGE ANALYSIS 

A primary goal of the research presented here is to extract medial ridges from images.  The lineage of the medial 
approach may be traced to the medial axis (otherwise known as the symmetric axis or skeleton) introduced on binary 
images by Blum and developed by Nagel, Nackman, and others.1-3 A classic illustration of the Blum medial axis of a 
rectangle is shown in Figure 1.  The dotted lines represent the locus of points equidistant from two or more boundary 
points of the rectangle. Also shown are a few of the circles whose centers lie on the medial axis and whose 
circumferences touch but do not cross the rectangle’s boundary. Pizer extended the medial axis to gray-scale images, 
producing a graded measure called medialness, which links the aperture of the boundary measurement to the radius of 
the medial axis to produce what has been called a core. A core 
is a locus in a space whose coordinates are position, radius, and 
associated orientations.4-5 Methods involving these continuous 
loci of medial primitives have proven particularly robust 
against noise and variation in target shapes.6 Determining 
locations with high medialness and relating them to the core 
has been accomplished by analyzing the geometry of loci 
resulting from ridge extraction.7 Models including discrete loci 
of medial primitives have also provided the framework for a 
class of active shape models known as deformable m-reps 
(sampled medial representations),8,9 as well as a statistical 
approach using pairs of detected boundary points known as 
core atoms developed previously by author Stetten.10  

Fig. 1  Blum medial axis of a rectangle (dotted lines), 
being the centers of all circles that touch the boundary 
in more than one place, but do not cross the boundary. 
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2. SHELLS AND SPHERES 

In our recent work with medial based image analysis, we have 
developed what we call the Shells and Spheres (SaS) framework.11-12  
In this framework, spheres centered at every pixel grow or shrink by 
adding or deleting an outer shell one pixel thick, as they use statistical 
measures of their contents to reach, but not cross, object boundaries in 
the image. Unlike conventional fixed-scale kernels, SaS operators 
consider as many pixels as possible to differentiate between objects 
and delineate boundaries. We use the word “sphere” here for 
convenience, since the approach is not limited to 3D and in fact is 
valid in n dimensions.  We depict “spheres” in 2D for clarity in 
Figures 2 and 3, which show spheres with solid circles and shells with 
dashed circles. Note also the use of bold non-italics, x and y, to denote 
the n-dimensional (in this case 2-dimesional) locations of the sphere 
centers.  We stay in 2 dimensions for the rest of this paper. 

Figure 2 shows spheres on opposite sides of a boundary between 
two objects with uniform intensities 1 and 9 in a noiseless image. 
Unlike fixed-scale kernels, the SaS framework avoids edge effects 
produced by conventional convolution-based operators. For example, 
in the left sphere (solid circle) in Figure 2, the population is truncated 
by the edge of the image, but it still has an unambiguous mean and 
standard deviation. These computations require no assumptions about 
pixel values outside the image.  

Figure 3 depicts part of the SaS algorithm used in our previous research.  The boundary between two objects is 
shown, now with noise in the image intensity (one object has intensities 1 and 2, the other has intensities 8 and 9).  A set 
of spheres (solid circles) is shown to the left of the boundary, each containing pixel y and each reaching but not crossing 
the boundary.  The solid circles show the correct behavior for spheres with optimal radii. The sphere at pixel x is 
attempting to add a new shell (dashed circle) and thereby join the set of spheres to its left, but it will be “repulsed” by the 
fact that its statistics do not match that of the other spheres. Thus the radius of the sphere at x will not be increased, and it 
will not grow across the boundary. The overall algorithm is quite complex, requiring a number of parameters that must 
be optimized,12,13 but it has produced useful results.13-16 For example, Figure 4 shows the algorithm segmenting the 
surface of the aorta in computerized tomography (CT) data. The image on the left is a sagittal slice through a noisy CT 
image of the thorax with contrast in the heart and great vessels. The image in the center shows the application of SaS 
removing noise while leaving sharp boundaries and uniform grayscale values for various regions. In this processed 
image, segmentation of the aorta and the innominate artery (pink) was achieved by a flood-fill operation through the 
centers of medial spheres, namely, 
spheres that reach more than one 
boundary, starting with a single 
manually-placed seed point in the 
aorta.  The image on the right is a 
surface rendering of the union of 
all of the 3D spheres within the 
same vessel. We will not discuss 
this method further here, because 
it is described in detail 
elsewhere,12 and because the 
present work represents a new and 
different approach to using the 
SaS framework. 

 

Fig. 2 Spheres centered at x and y made from 
concentric shells, reaching but not crossing a 

boundary in noiseless image. 

Fig. 3 In a noisy image, a set of spheres 
containing pixel at location y rejects a sphere 
centered at x from growing across boundary 

because its population is different. 

Fig. 4 left: noisy CT slice of thorax; center: 2D segmentation of aorta with Shells and 
Spheres; right: 3D segmentation with rendered surface. 
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3. THE STUDENT’S T-TEST  

In the present work, we develop a set of simpler algorithms within the SaS framework that show promise in finding 
boundaries and medial manifolds in the presence of noise. We began with a classical statistic, the student’s t-test for two 
non-pooled populations, to analyze adjacent populations of pixels.  We used the standard definition  
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x  is the mean intensity, 

 

s
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variance, and 

 

n  the sample size of two 
spherical populations of pixels. The 
student’s t-test statistic may be used along 
with the sample size to determine the P-
value for pairs of spheres at arbitrary scale 
(radius). The goal is to find adjacent non-
overlapping spherical populations of pixels 
that minimize the P-value and thus reject 
the null hypothesis that the two spheres are 
within the same object, given the presence 
of Gaussian noise.  

Figure 5 demonstrates the concept with 
four sphere-pairs (labeled A, B, C, and D) 
placed at different locations and orientations 
in a noisy image. The image has two 
regions separated by a vertical boundary, 
representing objects of differing mean 
intensity with Gaussian noise 
superimposed. A sphere-pair is defined in 
this case to be “located” at the “center” 
point (large black dot) between the two 
circles (“1” solid and “2” dashed). 
Corresponding intensity histograms for each sphere-pair are shown to 
the right. Sphere-pair A is located exactly on the boundary, so its 
spheres each encompass a region completely within one of the objects. 
Note that the corresponding histograms of pixel intensity overlap, but 
their means are clearly separated. Sphere-pair B is shifted to the right 
so that sphere B-1 now includes pixels from both objects.  As seen in 
the corresponding histogram B, the variance of sphere B-1 (solid line) 
is correspondingly larger, decreasing the t-test statistic (see Eq. 1) and 
increasing the corresponding P-value.  The two populations B-1 and 
B-2 are thus less likely to represent different objects than A-1 and A-
2.  Sphere-pair C has shifted even further to the right so that both 
spheres C-1 and C-2 are samples of the same population.  Histogram 
C shows that the corresponding populations are very similar, and the 
difference between their means will be close to 0. Therefore the t-test 
statistic will be near zero as well, and the corresponding P-value will 
be close to 1, i.e., the null hypothesis that the samples represent the 
same underlying population will be very likely. Sphere-pair D shows 
the effect of rotating sphere-pair A to a less than optimal orientation 
relative to the boundary. The histogram shows that both spheres D-1 
and D-2 now contain pixels from both objects, lowering the t-test 

Fig. 5  Sphere pairs on an image with a boundary and noise.  Each pair 
consists of two spheres (1 and 2) with a center point between them.  

Corresponding intensity histograms are shown to the right. 

Fig. 6  Noisy image (A), variance in a single 
sphere (B), and statistical measures from pairs 

of spherical regions (C,D). 
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statistic and raising the P-value.  At any given location, we can find the scale 
(sphere size) and orientation for the sphere pair with the highest student’s t-test 
statistic and lowest P-value, and we can use this process to identify boundaries. 

With custom software that we constructed in Java, we have tested this 
concept on a 256 x 256 pixel image containing two regions with differing 
means separated by a vertical boundary in the presence of Gaussian noise 
(Figure 6A). Based on a constant radius of 6 pixels, the variance within spheres 
at each location is shown in Figure 6B. As would be expected, the variance is 
high for individual spheres that cross the boundary and lower (and nearly 
constant) in all other areas (since the same Gaussian noise was added to both 
sides). Figure 6C shows the maximum difference-of-means (absolute value) for 
sphere pairs centered at all locations throughout the image, over all possible 
orientations for a given sphere pair. This is the absolute value of the numerator 
in Equation 1, or 

 

x 
1
! x 

2
. For sphere-pairs that cross the boundary, the highest 

value is with the sphere-pair oriented horizontally. Elsewhere, it is near zero. 
Figure 6D shows the student’s t-test statistic, as defined in Equation 1, the difference-of-means divided by a denominator 
that increases with variance in either sphere. Thus as one moves away from the boundary even a little, as depicted by 
sphere-pair B in Figure 5, the variance of one of the spheres increases, reducing the t-test 
statistic.  As detailed by the insert in Figure 6D, the t-test statistic produces a very sharp 
measure of boundariness, even in the presence of noise. Figure 7 shows this in graphical form, 
with the difference-of-means and the t-test statistic (both are absolute values and in arbitrary 
units) each averaged over all pixel rows. The t-test statistic clearly has a narrower peak, 
because it takes advantage of variance. 

 Figure 8 shows an automated determination of the boundary (red line) using the same 
sphere-pairs that generated Figure 6D (all spheres with radius of 6 pixels). The fact that a 
single vertical boundary is known to exist beforehand permits a simple search for the 
maximum t-test statistic along each horizontal row of pixels. Granted, this is an unrealistically 
simple task.  We will develop more general and complex methods in the following sections. 

4. COMPETITIVE ELIMINATION OF SYMMETRIC SPHERE-PAIRS 

To find boundaries when no prior information is know about their 
location or orientation, we have devised a method for searching through the 
space of sphere-pair radius and orientation to find the largest value at each 
location for the student’s t-test of that sphere-pair. By location, we mean the 
center point of the sphere-pair (see Fig. 5), and we assume (for now) 
symmetric sphere-pairs, i.e., the radius is the same for the two spheres in a 
given pair.  Since radius is allowed to vary in this search, we use the P-value 
derived from the student’s t-test, instead of the t-test value itself.  This is to 
correct for sample size, which varies with sphere radius, yielding a 
normalized statistic representing the probability of rejecting the null 
hypothesis (that the two spheres 
in a given pair are samples of the 
same population).  

A competitive elimination 
scheme is used to find local minima in P-values along putative boundaries by 
inactivating sphere-pairs with greater P-values, as the spheres in the sphere-
pairs are allowed to grow from their smallest scale. All sphere-pairs begin 
active, and then at each successive scale, a sphere-pair is inactivated if the P-
value at the center of either of its spheres is less than that of the sphere-pair 
itself. Thus stronger sphere-pairs (with lower P-values) eliminate weaker 

Fig. 8  Vertical 
boundary in noise. 

Fig. 9  Segmentation using P-values and 
symmetric sphere-pairs (see text). 

Fig. 10 Histograms (left) of raw image 
intensity and (right) mean intensity in 
spheres from sphere-pair competition. 

Fig. 7  Average measure for all rows 
in Fig. 5C and 5D, showing superior 

resolution for t-test. 
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ones.  The scheme has the advantage that as spheres grow larger, and thus computationally more expensive, fewer of 
them remain active. Figure 9A shows resulting boundary points in red (surviving sphere-pairs) for a rectangular area in 
noise; 9B shows the means of the constituent spheres reducing noise while leaving sharp boundaries; 9C shows the t-test 
statistic of every sphere pair, being highest at the boundary; 9D shows the radius of the optimum sphere pairs (black is 0 
at the boundary, increasing with distance from the boundary). Figure 10 compares the histogram of the original image 
(Fig. 10A) to that of the means of the optimum spheres (Fig. 10B), demonstrating the extraction of the object from the 
noise. 

5. ASYMMETRIC SPHERE PAIRS 
We now describe a different approach, using sphere-pairs that are asymmetric. This approach has proven the most 

successful so far, especially in terms of its ability to extract the medial manifold, and we devote the rest of this paper to 
describing it.  As opposed to the symmetric pairs previously described (see Fig. 
5), in which the two spheres in a given pair are always the same size, each pair of 
adjacent circles now has an “outer” sphere (dashed circle in Fig. 11) held at a 
constant small radius, and an “inner” sphere (solid circle) that increases in radius. 
The location of the asymmetric sphere-pair is considered to be the center of its 
inner sphere, and thus a family of possible sizes for the inner sphere and 
orientations for the outer sphere are possible at each location. Two such pairs at a 
given location are shown in Figure 11, with the pair containing the larger inner 
sphere (solid circle) correctly finding the boundary with one of its outer spheres. 
The constant radius of the outer sphere is chosen to be small enough to provide 
sufficient boundary curvature while still being large enough to represent a 
statistically significant population. As the inner sphere is grown to each new 
radius, every possible orientation of outer sphere is tested, and an overall 
maximum student’s t-test is used to identify the optimum sphere-pair. This 
optimum pair should have its inner sphere just touching the nearest boundary and 
its outer sphere just on the other side of that boundary.  As will be discussed 
below, we actually have modified the student’s t-test so as not to favor larger 
inner spheres. Once an optimum sphere-pair has been found for each pixel, we are 
ready to identify boundaries and medial ridges, as will be described next. 

6. THE DIRECTION OF THE SPHERE MAP AND ITS DIVERGENCE 
Thus far we have only used a scalar radius function, which we denote 

 

r(x) , the size of the inner sphere at x (recall 
that x is also the location of the corresponding sphere-pair, so only one inner sphere is defined per pixel).  Assuming a 
correct optimization of the sphere-pairs from the method described in the previous section, 

 

r(x)  represents the scalar 
distance to the nearest boundary.  This is commonly called the Euclidian or Danielsson distance map.17  

In addition to the scalar value 

 

r(x) , there is also a unique direction to the nearest boundary, which we denote 

 

d(x) , 
defined as the unit vector in the direction from the center 
of the inner sphere and the center of the outer sphere for 
the asymmetric sphere pair at 

 

x .  Thus a vector radius 
function 

 

r(x)  can be constructed as 

 

r(x) = r(x)d(x) .  The 
direction 

 

d(x)  is not unique at the medial manifold, where 
at least two such directions exist.  Thus 

 

d(x)  changes 
abruptly as one crosses a medial ridge, switching from one 
nearest boundary to another. Detecting this switch can 
identify a medial ridge. 

When choosing how to measure a change in 

 

d(x)  with 
respect to x one has a number of choices.  The full first 
derivative of an n-dimensional vector function with respect 
to its n-dimensional domain is an n x n matrix of the first-
order partial derivatives, the Jacobian matrix.  It turns out, 

Fig. 12  Divergence of the direction: positive at the medial 
ridge and negative at the boundary. 

Fig. 11  Two asymmetric 
sphere-pairs at one location, 
inner = solid, outer = dashed. 
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however, that we do not need all those partial derivatives for detecting the medial ridge (or a boundary). We note that as 
one moves across a medial ridge in the 

 

!x  direction, the change in the direction function 

 

!d(x)  will always be in the 
same direction as 

 

!x .  This is shown in Figure 12  (the rectangle example of a medial ridge from Fig. 1). Locations A 
and B show the direction function on either side of a medial ridge as black arrows within circles pointing towards the 
nearest boundary. In each case, taking the derivative of the direction function as one moves across the medial ridge (by 
moving along the thin white arrow) yields a change in the direction (the thick white arrow) parallel to the direction of 
motion.  The opposite happens at location C, where one crosses the boundary of the rectangle, with the change in the 
direction function being exactly in the opposite direction.  Thus the only partial derivatives that are non-zero as one 
crosses a medial ridge or a boundary are those appearing in the divergence operator. The divergence of 

 

d(x)  is defined 
in n-dimensions as  

 

! "d(x) =
# d

i
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# x
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n
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The divergence will be positive at the medial ridge, as if the ridge acts as a source of direction flow, and negative at the 
boundaries, as if it acts as a trough or sink for direction flow. 

In the continuous domain of an object with perfectly defined boundaries, the direction function will change 
instantaneously at the medial ridges and boundaries, and its divergence will thus be infinite.  Singularities are notoriously 
difficult to handle in computational systems, but we can neatly avoid the problem by never stepping directly on a 
singularity.  Instead, we force a choice at each pixel as to the direction to the nearest boundary. We basically assume that 
the singularities, i.e. the medial or boundary points, lie between pixels, and we sense those singularities by changes in the 
direction between neighboring pixels.  This is possible because we are processing a discrete, not continuous, image. We 
therefore use the discrete version of the unit direction function 

 

d x[ ]  with an unambiguous value at each pixel. To 
compute the discrete divergence of 

 

d x[ ]  in n-dimensions we use a difference function, 
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i
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where di is the ith component of 

 

d x[ ]  and 

 

u
i
 is the unit vector in the ith cardinal direction (in other words, 

 

x + u
i
 is the 

neighboring pixel along the i-axis direction). Operating thus on adjacent pixels with a simple difference function 
maximizes spatial resolution, although it also shifts the computation by half a pixel in each of the cardinal directions. 

A useful feature of the divergence of the direction function is that it can serve as a measure of the angle between the 
direction to the nearest boundary on either side of a medial ridge.  For example, in Figure 12 at point A, that angle is 
180°, whereas at point B it is only 90°.  This will result in a lower positive value for the divergence at point B than at 
point A.  At point C, along the boundary, the divergence will be negative.  These phenomena will be demonstrated in the 
next section. 

Fig. 13  (A) Shapes in Gaussian noise, (B) unit direction map 

 

d x[ ] with intensity wrapping at 360°, (C) divergence of the 
distance map 

 

! "d x[ ] with white = positive (medial ridges) and black = negative (boundary troughs), (D) divergence with 
positive values thresholded near 180° degrees.  
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7. RESULTS WITH ASYMMETRIC SPHERE-PAIRS AND THE DIVERGENCE OF DIRECTION 

A series of experiments were performed using the methods just described with asymmetric sphere-pairs and the 
divergence of the direction function.  Figure 13A shows a rectangle and a circle in Gaussian noise.  Asymmetric sphere-
pairs were optimized up to a maximum possible radius greater than the diameter of the circle or the height of the 
rectangle, yielding the direction function shown in Fig. 13B, which maps angle to intensity (wrapping around from black 
to white at +45°).  The divergence of this direction function is shown in Fig. 13C, normalized over its range between 
white for positive divergence and black for negative.  The classical medial axes of the rectangle are clearly demonstrated 
as white lines, as well as branches extending to the boundaries that are typical with minor fluctuations in boundary 
direction. The circle also shows a central medial manifold, as does the space between the circle and the rectangle 
(“inside” spheres form on both sides of any boundary).  Boundaries are shown in black (negative divergence). Fig. 13D 
shows the same data with positive divergence truncated near the equivalent of 180° degrees, so that the 90° ridges to the 
corners of the rectangle (B in Fig. 12) and minor ridges to boundary fluctuations with even more acute angles are no 
longer visible.  Only the major axes, or what Pizer calls cores, remain.4 

The same procedure was applied to simulated branching vessels with noise (Fig. 14 A).  Now we also show the t-test 
values (modified as described below) in Fig. 14B, which are high within a certain range of the boundaries (the inner 
sphere was not allowed to grow beyond that range).  Elsewhere in the image, sphere-pairs found no significant variation.  
Figure 14C shows the resulting direction map, with ridges at the medial axes and troughs at the boundaries. Figure 14D 
shows the resulting divergence of the direction function, again thresholded near 180°, so that only the major medial axes 
are shown.  Branch points are clearly handled effectively. 

Finally, we applied the procedure to a maximum intensity projection (MIP) of cerebral vasculature imaged using time 
of flight Magnetic Resonance Angiography (MRA).  The volume includes the Circle of Willis at the base of the brain.  
Figure 15A shows the original projection 2D image, with Fig. 15B showing the modified student’s t-test.  Given the very 
small diameter of the vessels, the outer sphere radius was reduced, as was the maximum range of the inner spheres, to be 
appropriate for the particular structures. Figures 15C and 15D show, respectively, the direction function and its 
divergence. 

Fig. 14 (A) Simulated bronchi in noise, (B) altered 
student’s t-test, (C) unit direction map, (D) divergence 

with positive values thresholded near 180° degrees. 

Fig. 15 (A) MRI of cerebral vasculature, (B) modified 
student’s t-test, (C) unit direction map, (D) divergence 

with positive values thresholded near 180° degrees. 
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8. PROBLEMS WITH THE T-TEST 

During our experiments with asymmetric sphere-pairs, we found problems with the student’s t-test that were not 
apparent with our earlier experiments with symmetric sphere-pairs elimination.  In particular, the student’s t-test (and the 
subsequent P-value) resulted in unduly favoring larger spheres.  Empirically we found that our optimization of sphere 
size improved dramatically if we dropped the “n” from Equation 1, so as to make the measure independent of sample 
size.  The n basically accounts for the lower standard error of the mean as sample size increases.  Thus we have adopted 
the following modified t-test,  
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             (4) 

simply because it works better empirically. The theoretical basis for this is an open question requiring further study. 

9. EXTENSIONS TO 3D AND CLINICAL APPLICATIONS 

Nothing in the mathematics developed in this paper is specific to 2 dimensions.  In particular, by using divergence 
instead of a direct measure of angle, we can monotonically convert what amounts to the change in orientation of the 
direction function in n-dimensions to a single scalar value. 

We are presently transferring our system from its present 2D implementation in Java to the Insight Toolkit (ITK) so 
that it can be applied efficiently in 3D to segmenting the vasculature of the lung, as imaged with computerized 
tomography (CT) for the detection of pulmonary embolism.  More information about our research can be found at our 
website, http://www.vialab.org. 
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