Chapter 8. Experimental Validation with 3D Ultrasound

This chapter describesa series of in vitroand in vivo experiments validating the methods
of this dissertation using RT3D ultrasound data. The first experiment identifies the cardiac left
ventriclein vivo using amedial node model. Next, the effectiveness of core atomsfor finding
volumes is demonstrated on ultrasound images of fluid-filled balloons of known volume. The
manual tracing technique for the LV isthen described, which is used as a gold standard for the
remaining two experiments. Core atoms are then applied to the task of determining LV
volume, with rather poor results. Finaly, the itereative Bayesian method developed in the
previous chapter is applied to fuzzy segmentation of the LV and the errors analyzed.

8A. ldentifying the AMV Axis

This section describes experimental validation of the methods devel oped in Chapters 3-6
for object identification using a medial node model (Fig. 8.1A) and demonstrates the ability to
automatically identify the Apex-to-Mitral-Valve (AMV) axis of the LV. Only apical ultrasound
scans were used, with afurther constraint that only time frames with the mitral valve closed
were considered. Fortunately, thisincludes the entirety of systole and could be used, for
example, to calculate stroke volume.

No pre-processing of the data was performed. Boundariness was found using a Difference
of Gaussian measurement of intensity gradient, with Gaussian application accomplished by
repeated convolutionwitha 2™ 2” 2 binomial kernel. Further constraints were applied asto
the absolute intensity of the candidate boundary points.

To identify the cylinder in the image data, boundary points were determined with 4
applications of the binomial kernel. Core atoms with diameters 0.8 to 4.6 cm and face-to-
faceness greater than 0.88 (see Eq. 3.2) were collected in bins on aregular lattice and
ellipsoidal voting was applied. An example of the resulting clustersis displayed in Fig. 8.1B.
Crosses are shown in the cylindrical chamber of the ventricle. Due to the pre-selection of core
atoms by scale, no other significant clusters of core atomswere found. A singleintensity
constraint could not be found to reliably identify the endocardia boundary, because the
intensity varied between images extending into the range of the outer boundary between the



myocardium and surrounding connective tissue (epicardium or septum). However, since this
outer boundary also formed a cylinder roughly concentric to that of the endocardial boundary,

core atoms forming from the outer boundary established approximately the same axis for the
LV.
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Fig. 8.1 Usingadatistical model of medial primitives to automatically identify the axis
of the cardiac |eft ventriclein Real Time 3D ultrasound data. A scaleof 1 cmisshowninD.

Next, the mitral valve (MV) was sought. Boundary points were determined as above, but
with only 2 applications of the binomia kernel to accommodate the finer structure of the MV.
Core atoms with diameters 0.0 to 0.8 cm and face-to-faceness greater than 0.55 were collected.
The lower threshold for face-to-faceness was necessary because of the smaller size of the core
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atoms. Asshownin Fig. 8.1C, the densest clusters formed at the center of the MV, although
weaker false targets were also detected in the myocardium off to the side of the ventricle. To
eliminate these false targets, the following criterion was established for the formation of
appropriate pairs of clusters. Only dab-like clusterslocated further from the transducer than
cylindrical clusters were permitted to form pairs. These pairs voted for their constituent
clusters weighted by the product of the cosines between the orientations of each of the two
clusters and the vector between them, in the spirit of face-to-faceness as (developed in Section
3A). Thevoting permitted amean MV location and amean LV cylinder location to be
computed for each scan. The vector between these two mean locations established a cone for
expected unpaired boundary points at the apex of the LV and the mean distance to such apical
coreionswas used to determine the location, aong that vector, of the apical cap. Thusan
apex-to-mitral valve (AMV) axis was determined, as shownin Fig. 8.1D.

The entire procedure that produced Figs. 8.1B, C, and D was automatic and required
approximately 10 seconds per 3D scan on a400 MHz Pentium computer (each scan holds
approximately 2 million 8-bit voxels).
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Fig. 8.2 A. Error (cm) between manua and automated placement of mitral valve (MV)
end-point of apical-mitral-vave (AMV) axisfor al 155 3D ultrasound scans. B. Error
between manual and automated placement of apical end-point of AMV axis, for all 155 scans.
C. Error for the apical end-point for arandom subset of 65 scans corrected for bias measured
in the remaining 90 scans, reducing the RM S error from 1.4 to 0.7 cm. (See Fig 15D for scale

of 1cm.)
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The anatomical end-points of the AMV axis (the ventricular apex and the center of the MV)
were also determined manually, asfollows. A human operator was instructed to follow the
genera cylindrical shape of the left ventricle, marking the ventricular apex and the center of the
MV on B-mode and C-mode dlices.

The dataincluded 18 RT3D scan sequences of in vivo human hearts, using a Volumetrics
Model-1 scanner operating at 2.5 or 3.5 MHz. Of the 18 sequences, 12 were described as
normal, 4 as dilated cardiomyopathy, 1 as akinetic, and 1 as pericardial effusion. In each
sequence, only scans in which the MV was closed were used, for atotal of 155 scans. All
parameters for the method were established during its devel opment using several normal
sequences, none of which were included in these 18 sequences.

The locations of the manual end-points were compared to those determined automatically
for al 155 scans, as shown in Figs. 8.2A and 8.2B. The error reported is simply the total
physical distance (cm) in 3 dimensions between the manual and automated end-points. For
reference, ascale of 1 cm is marked on the cardiac scan in Fig. 8.1D, with the pyramid of a
typical scan having a height of approximately 15 cm. Ascan be seenin Fig. 8.2A, for most
scans the center of the MV was correctly located within 2 cm (RMS error 1.2 cm). The
greatest error was dightly more than 3 cm. For the apex of the left ventricle, the greatest error
was approximately 2.5 cm (RMS error 1.4 cm).

These errors were improved by eiminating a consistent bias between manual and
automated measurements. The scan sequences were divided blindly into two groups (training
and experimental) without regard to image quality, distributing normal and abnormal hearts
evenly, and placing the akinetic and pericardial effusion scansin the experimental group.
Error for the LV apex isdisplayed in Fig. 8.2C, with only the experimental group (65 scans)
shown, corrected for bias observed in the training group (90 scans). Correcting for bias
yielded an RMS error of 0.7 cm (x = 0.37 cm, y = 0.47 cm, z = 0.41 cm) for placement of the
LV apex,and 1.1 cm (x =0.48 cm, y = 0.62 cm, z = 0.72 cm) for the MV. The automated
placement of the LV apex tended to be further into the ventricular chamber (average of 1.2 cm
further away from the transducer) than the manual measurement. This bias may have been due
to greater local curvature at the LV apex than would have been expected from the simple model
of an untapered cylinder with a hemispherical cap, sinceatypical LV actualy narrows
considerably asit approaches the apex. Another possible explanation for the biasis that the
axis, as determined by the LV and MV clusters, is not centered perfectly as it extends into the
apex, leading to contact along the wall rather than at the apex. Other sources of error include
sampling in the boundary detection and ambiguitiesin the correct location of the landmarks by
manual placement.
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8B. Measuring Balloons with Core Atoms

This section describes the empirical validation of amethod of determining volume using
core atoms directly on fluid-filled balloonsin a bath, in the same manner as mean core atom
length was determined on parametric objects in Chapter 4 (see Table 4.2). The method worked
quite well on the balloons, which represent uncluttered targets with sharp boundaries. The
technique was less successful when applied to the left ventricle and was replaced with the
Fuzzy Fill method for that application, aswill be described in Sections 8C and 8D.

Fig. 8.3. Coreatom clustersin aballoon (from the inside boundary of the intensity ridge)
identified as cylindrical along the axis of the balloon, athough a significant number of core
atoms actually formed vertically through the balloon as well.

The ability to accurately measure volume of real objectsin 3D ultrasound data using core
atoms was demonstrated on a series of 7 balloonsfilled with an ethanol-water mixture of
known density. The volume of the balloons was determined by weight, ranging from 58.0 ml
to 83.1 ml. The balloons were scanned in a bath of the same mixture using the prototype
RT3D ultrasound scanner developed at Duke University known as"T4". Boundariness was
found using a Difference of Gaussian, with 6 applications of abinomial kernel (see Appendix
B). Core atomswith lengths ranging from 2.3 to 7.8 cm and face-to-faceness of greater than
0.88 were collected from each scan. A center of mass was computed for all core atomsin each
scan. The mgjority of core atoms formed aroughly spherical Koosh ball configuration as
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shown for the spherein Fig. 3.8. An example of clusters from one balloon is shown in Figs.
6.4 and 6.5 and visualized in 3D in Figs. 6.6 and 8.3. Volume measurements were performed
simply by selecting core atoms within 1 cm of the center of mass of all core atomsin the image,
since the image was uncluttered by other targets. The mean length of these core atoms (divided
by 2) yielded an effectiveradius r from which avolume was calculated using v = (4/3p r°.
Thisautomatically determined volume was compared to balloon volume, determined by
weight. This method of volume calculation is distinct from, and simpler than, the fuzzy
segmentation technique applied to the LV in Section 8E.
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Fig. 8.4 Radiusof fluid-filled balloons determined automatically using core atomsto anayze
3D ultrasound images, compared to radius of the same balloons determined by weight
assuming a spherical shape. (x) outer facing boundary, (+) inner facing boundary, (0)
weighted average of inner and outer boundaries, with weight determined to minimize RMS
percent error by volume to 6.5%.
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A complication arose because the skin of aballoon in ultrasound presents a dark-light-dark
ridgeinintensity rather than a single dark-light transition (again see Fig 8.3). Thisridge causes
boundary points to change orientation as one crosses the skin of the balloon. Using the inward
facing boundary pointsto form core atomsyields a smaller radius than expected, while using
the outward facing boundary points (by switching the polarity, defined in Section 3.1) yieldsa
larger radius than expected. These results for the two cases are marked "+" and "x"
respectively in Fig. 8.4.

An optimum weighted average radius r = kr, +(1- k)r, was computed from the inner
radius r, and the outer radius r, by minimizing the RMS percent error between the resulting
calculated volume and that determined by weight, for the set of 7 balloons. The optimumvalue
for k was 0.38, favoring the outward facing boundary points, yielding an RMS percent error
by volume of 6.5%, which agrees favorably with previous measurements on the same balloons
using a Hough transform (Stetten, Caines et al. 1995). The weighted average radii (marked
"0" in Fig. 8.4) yielded alinear regression (dotted line) close to unity (slope = 1.03, intercept
=0.081 cm).

This measurement of balloon volume was completely automated and took advantage of the
fact that many individual measurements were combined statistically. In a sense, each core atom
serves as ayard-stick crossing the sphere near the center. Since generally the selected core
atoms are chords of the sphere and not true diameters (as shown in Figs. 4.1C and 8.5), they
can be expected to underestimate the actual diameter. This may explain the bias towards the
outer surfacein optimum valuefor k. Another reason for this bias may be that the balloons
were generaly dlipsoidal with a single mgjor axis along the ultrasound beam, producing a
propensity of shorter core atoms across the two minor axes.

b,

..

Fig. 8.5 Proposed correction for measurement with core atoms displaced from the center.
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The displacement vector p of acore atom relative to the center of acluster (see Fig. 8.5) could
theoretically be used to correct for the difference in length between a chord and a diameter.
Thiswould apply for the cylinder and the sphere, but not for the slab, since no such
displacement occursinaslab. This proposed correction has not been tested to date and
remainsin thelist of future work.

8C. Manual Tracing of LV Volume

Manual tracing was performed on short axis dices through the LV. The diceswere
produced orthogonal to manually identified endpoints of the AMV axis, using cell projection of
I-mode dlices created using the 3-Stripes algorithm developed in Section 6D. A stack of 16
parallel sliceswas collected for each scan. Volume was calculated for comparison with the
automated method in Section 8D by multiplying the areawithin all of the traces by the dice
thickness. The results were stored along with the physical coordinates of the traces for
comparison with the automated method in 8E. Visualization of the traces superimposed in 3D
on B-mode images was used to verify their accuracy (see Fig. 8.6).

8D. Computing LV Volume with Core Atoms

The genera approach used on balloons in Section 8B was applied to the left ventricle.
Oncethe AMV axiswas computed (as described in Section 8A), a set of wedgesina
cylindrical coordinate system was established around the axis (asin Fig. 7.2B) and a mean
radius to boundary points in each wedge computed, thus establishing a surface map for the LV.
Missing portions of the surface map (containing no boundary points) were interpolated using
2D convolution on the surface map. Volume was computed for the ventricle using the
cylindrical model. A sampleisshown visualized in 3D in Fig. 8.6C, with the AMV axisin
yellow and the surface map shown as agrid of dots with each dot representing a mean radius.

The results of this application of core atoms to measure volumes was far |less encouraging
than the corresponding application to determining balloon volume. The results are not reported
here because the experiment was terminated. Although the core atoms had successfully found
the AMV axis, they did so by forming from both endocardial and epicardial boundary points.
These two surfaces are roughly concentric cylinders, and therefore they share the same axis.
However, the core atom populations do not accurately represent the ventricular chamber
because of the presence of the longer epicardial core atoms.
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B. Sab of mitra valve

C. Automated axis and surface map D. Manua tracings of ventricle

Fig. 8.6 A. Color version of Fig. 8.1B with color mapped from lambdatriangle asin Fig.
4.9. B. Colorversionof Fig. 8.1C. C. Automated surface map for the LV.
D. Manua identification of |eft ventricle achieved by manual tracing on I-mode dlices.
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8E. Testing Fuzzy Segmentation of the LV

Although core atoms successfully identified the AMV in section 8A, they overestimated
ventricular diameter in section 8D because they formed at both the endocardia and epicardial
boundaries. Thisbehavior led to the development of the fuzzy segmentation method based on
voxel intensity and location described in section 7B.

The present section describes the application of the fuzzy segmentation method to the same
set of in vivo human hearts for which the AMV axis was automatically established in section
8A. From the fuzzy segmentation, LV volumeis computed and an effective endocardial
surface determined. The results are analyzed against manual tracings as a gold standard.

The RT3D ultrasound sequences were divided into the same training and test setsasin
Section 8A. Thetraining set was used to optimize the method's parameters in terms of
accuracy of volume measurement and to measure bias in the measurement using regression. Of
the many parameters in the overall process, those which were adjusted included the shapes of
the surface model in Fig. 7.10 and the probability curvein Fig. 7.12. Only afew iterations
were performed. Fully optimizing these and other parametersin the method is beyond the
scope of this dissertation. The method was then applied to the test set without further
adjustment of parameters. The resulting measurements were compensated for the bias found in
the training set.

Fig 8.7 Region of interest (bright) and LV surface model (dark) superimposed on
ultrasound data.
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Fuzzy segmentation proceeded for each heart as follows. once the AMV axiswas
automatically established asin section 8A, aregion of interest (ROI) and an expected boundary
of the ventricle were established around the AMV axis using the surface model illustrated in
Fig. 7.10. Scaling factors Sa¢ and an: were determined by the MNM model as described in
section 7B. InFig. 8.7 an example of an ROI (bright) encompassing an LV surface model
(dark) is shown located, oriented, and scaled by the MNM. A probability p, (j) was

computed for each voxel based onitsr and | relativeto the surface model, using the
probability functionin Fig. 7.12. An example of p, (J) for oneimage is shownin Fig. 8.8.

Fig. 8.8 The probability p, (j ) for each voxel with values ranging from 1 (white) inside
and 0 (black) outside the expected ventricle.

A weighted mean of voxel intensity | within the ROI was then computed using Eq.
7.19 with each voxel in the ROI being weighted by its p, (j). Theweighted mean T was

used to compute p, (J) for each voxel using the probability functionin Fig. 7.13. An
aggregate probability p A(j) was then computed for each voxel using Eg. 7.21 and a
corresponding total volume v, was calculated using Eq. 7.22. The aggregate probability is
shown in Fig. 8.9 with values ranging from 1 (white) to O (black). Asmay be seen, pA(j)
is affected by both p, (j), which dominates the overall distribution, and p,(j), which
accounts for finer detail.

Itisclear from Fig. 8.9 that the fuzzy segmentation method does not yield a reasonable
probability for each individual voxel. The fuzzy representation lacks an explicit surface and
therefore also lacks adistinct topology. The dark areas corresponding to non-ventricular
structures, such as the mitral valve and epicardium, clearly do not make topological sense
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floating disconnected from each other. Only in certain statistical operations, such asthe
computation of volume, is the fuzzy shape representation reasonable.

Fig. 8.9 Theaggregate probability p,(j) for each voxel with values ranging from 1
(white) to 0 (black).

An analysis of the accuracy of the fuzzy segmentation method was based on manual
tracings performed on the same data. Each image was manually analyzed asfollows: the end
points of the AMV axis were established manually and a stack of 1-mode slices was created
orthogonal to the axis, as described in Section 6D. Manua tracings were performed on each |-
mode dlice by a single operator, the author. An exampleisshownin Fig. 8.10A.
Segmentation was then performed by examining each voxel in the datafor itslocation relative
to thetraces. A probability p;(j) of the jthvoxel being within the manual tracings was
computed by projecting the voxel location onto the nearest I-mode dlice in the stack. If the
projection placed it inside the corresponding manual tracing, then p; (j ) =1. Otherwise,
p;(j)=0. If the voxel waslocated such that it projected onto the AMV axis beyond either
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endpoint , then p,(j)=0. Figure 8.10 B shows the result of this process. A volume v, was
then computed from the tracings by

v, = a pr(iNvi) (8.1)

il ROI

where v(j) isthe volume of voxel j. Recall that v(j) isnot constant in the azimuth-elevation

coordinate system (see Section 6A). Manual tracings were performed three times by the
observer, each time with individual manual placement of the AMV axis. The arithmetic mean
v, of the three resulting values of v, was computed.

A B

Fig. 8.10 A. Manua tracings. B. Corresponding set of labeled voxels with white
symbolizing p; (j)=1 and black, p,(j)=0.

Results for the training data are shown in Fig. 8.11 comparing v, from the aggregate

probability method against v from the 3 manual tracings. The correlation coefficient is
R=0.88 and the standard error of the estimateis S, , =10.4 ml . The standard deviation

between trestments for v, computed from the 3 manual tracingsis 20.7 ml. Using slopes and

intercepts from the training data, compensated volumes were computed from automated
volumes determined from the training data and compared to the mean volume from the 3
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manual traces. Resultsare shown in Fig. 8.12 with an RMS error of 25.9 ml. This
represents absol ute accuracy using new data with compensation for bias from the training data.
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Fig. 8.11 Training data: automated volume v, vs. manua volume ¥, for all 88 scans.
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Fig. 8.12 Test data compensated with slope and intercept from regression on training data:
automated volume v, vs. manual volume V; for all 65 scans.
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Improved results are possible if, instead of total volume, change in volume for agiven
heart ismeasured. Closer inspection of Fig. 8.12 shows several distinct bandsin the data,
suggesting that the method is sensitive to variations between the scans on individual hearts. A
further analysis showsthisto be the case. Each heart in the data appearsin a sequence
containing between 3 and 14 images. The difference between volume from each image and the
mean volume for its particular sequenceis plotted in Fig. 8.13 for manual vs. automated
compensated volumes performed on the test data. A reduced RMS error of 9.2 ml is seen for
volume change within agiven heart. The ability to accurately determine change in volume has
clinical significance even if total volume is not as accurate, since volume change can yield
stroke volume or provide a measure of heart function over the course of short-term therapy.
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Fig. 8.13 DetaVolumefor test data computed as difference from the mean for automated
vs. manual volumes for al 65 scans.

It isdesirable to conduct a more detailed comparison between the automated and manual
segmentations, taking local boundary location into account. The accuracy of segmentation is
not well judged solely by comparing total volume, since an object's volume says nothing about
itslocation and since different shapes many have the same volume.

Using the media framework already established, error between the manual and automated
segmentations can be localized in spherical coordinates| , w, and r (see Fig. 7.10).
Longitude w is not aparameter in the ventricular surface model, but real ventricles are
asymmetrical around the AMV axis and segmentation error are therefore expected to be
likewise asymmetrical. Sinceal the scansin the data were performed using the same
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transducer orientation including rotation around its axis, error can be correlated as a function of
both] and w.

For each image, the mean location for the AMV axis from the 3 manual tracings served asa
common frame of reference for comparing the three manual segmentations p, (j ) against the
automated segmentation p,(j). In each case, voxelswere sorted by | andw to produce sets
of voxels. Each set S(j ,w) contained all the voxelsin a given wedge from which volumes
v, (j ,w) and v,(j ,w) were calculated, respectively

vl w)= S%v)(j)pr(n and )= Sé(iv)(j)pA(j) (8.2)

Although the segmentations were based on voxels, an effective radia distance within each
wedge was computed using the standard formulafor the volume v of asolid angle Dj Dw ina

sphere of radiusr

3

v:%sinj DWDj . (8.3)

The effectiveradius r(j ,w) for a particular wedge was determined by the volume v(j ,w) of
that wedge,

L mafjw) o
(D = 4

The effectiveradius r(j ,w) over thedomain of | andw represents an endocardial surface
map referenced to the AMV axis, and can provide alocal measure of segmentation error.
Using Eq. 8.4, an automated endocardial surface map r ,(j ,w) was computed from v, (j ,w),
and 3 manual surfacemaps r- (j ,w) were computed from the respective determinations of
v, (j ,w) for the 3 sets of manual traces. An arithmetic mean surface map 7, (j ,w) for the 3
individual r. (j ,w) was aso computed to represent amean manual tracing.
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Fig. 8.14 Training data: Correlation between endocardia surface maps from automated

r(i ,w) and manual 7 (j ,w) anadysis. Local correlation coefficient (A) and standard error of
the estimate (B) shown asafunctionof j and w.

Results for the training data are shown in Fig. 8.14 comparing r ,(j ,w) with 7 (j ,w) by
plotting the correlation coefficient and standard error of the estimate as functionsof | andw .
The correlation coefficient within a given wedge isin the 0.6 to 0.8 range, representing fairly
good correlation between boundary locationsin different images. The standard error of the
estimate falsin therange 0.2 to 0.6 cm, and is seen to be greatest at the apex and the mitra

valve.
The test datawere then analyzed and r ,(j ,w) calculated for those data. The linear

regression computed from the training data was used to compensate r A(j ,W) from the test data
for expected bias. The RMS error with respect to the mean manual tracings ', (j ,W) for the
test datais shownin Fig. 8.15B. In genera, the error falsin the 0.2-0.8 cm range, with
errors up to 1.8 cm occurring near the mitral valve. The large spike near the mitral valve may
correspond to the aorta, which leavesthe LV adjacent to the mitral valve and provides an
ambiguity asto inclusion in the ventricle. Considering the general scale for the ultrasound
scans of 15 cm, the general dimensions for the ventricle of 3-7 cm, and the poor visibility of
the endocardium in the ultrasound images, these results seem arather good achievement.
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To gauge the precision of the manual tracings, the standard deviation between r; (j ,w)
from each of the 3 tracings was computed, shown in Fig. 8.15A. Intraobserver error isin the
range 0.1 to 0.4 cm, less than the error from the automated results. For the manual tracings,
the error is greatest at the mitral valve, with the apex located relatively accurately. Inter-
observer error based on more than one human operator would likely be larger, perhaps
comparable to that of the automated system. Determination of inter-observer error should be
carried out in future work.

This section has shown empirically that fully automated segmentation of the cardiac LV in
RT3D ultrasound datais possible using statistical analysis of media primitivesto establish the
AMYV axis and subsequent fuzzy segmentation based on voxel intensity and location relative to
that axis. The next chapter will discuss the strengths and weaknesses of the various methods
developed in this dissertation, and possible future directions for research.
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Fig. 8.15 A. Training data. Standard deviation in endocardial surface maps r-(j ,w) from
3 sets of manual traces shown asafunctionof | andw. B. Testdatas RMS error between

endocardial surface maps r ,(j ,w) compensated for bias
and 7, (j ,w) asafunctionof | andw.
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