
Chapter 8.  Experimental Validation with 3D Ultrasound

This chapter describes a series of in vitro and in vivo  experiments validating the methods

of this dissertation using RT3D ultrasound data.  The first experiment identifies the cardiac left

ventricle in vivo using a medial node model.  Next, the effectiveness of core atoms for finding

volumes is demonstrated on ultrasound images of fluid-filled balloons of known volume.  The

manual tracing technique for the LV is then described, which is used as a gold standard for the

remaining two experiments.  Core atoms are then applied to the task of determining LV

volume, with rather poor results.  Finally, the itereative Bayesian method developed in the

previous chapter is applied to fuzzy segmentation of the LV and the errors analyzed.

8A.  Identifying the AMV Axis

This section describes experimental validation of the methods developed in Chapters 3-6

for object identification using a medial node model (Fig. 8.1A) and demonstrates the ability to

automatically identify the Apex-to-Mitral-Valve (AMV) axis of the LV.  Only apical ultrasound

scans were used, with a further constraint that only time frames with the mitral valve closed

were considered.  Fortunately, this includes the entirety of systole and could be used, for

example, to calculate stroke volume.

No pre-processing of the data was performed.  Boundariness was found using a Difference

of Gaussian measurement of intensity gradient, with Gaussian application accomplished by

repeated convolution with a 2 × 2 × 2  binomial kernel.  Further constraints were applied as to

the absolute intensity of the candidate boundary points.

To identify the cylinder in the image data, boundary points were determined with 4

applications of the binomial kernel.  Core atoms with diameters 0.8 to 4.6 cm and face-to-

faceness greater than 0.88 (see Eq. 3.2) were collected in bins on a regular lattice and

ellipsoidal voting was applied.  An example of the resulting clusters is displayed in Fig. 8.1B.

Crosses are shown in the cylindrical chamber of the ventricle.  Due to the pre-selection of core

atoms by scale, no other significant clusters of core atoms were found.  A single intensity

constraint could not be found to reliably identify the endocardial boundary, because the

intensity varied between images extending into the range of the outer boundary between the



myocardium and surrounding connective tissue (epicardium or septum).  However, since this

outer boundary also formed a cylinder roughly concentric to that of the endocardial boundary,

core atoms forming from the outer boundary established approximately the same axis for the

LV.
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      A.  Model of left ventricle and mitral valve                     B.  Cylinder of ventricle

       
                 C.   Slab of mitral valve             D.  Automated apical-to-mitral-valve (AMV) axis

Fig.  8.1    Using a statistical model of medial primitives to automatically identify the axis
of the cardiac left ventricle in Real Time 3D ultrasound data.  A scale of 1 cm is shown in D.

Next, the mitral valve (MV) was sought.  Boundary points were determined as above, but

with only 2 applications of the binomial kernel to accommodate the finer structure of the MV.

Core atoms with diameters 0.0 to 0.8 cm and face-to-faceness greater than 0.55 were collected.

The lower threshold for face-to-faceness was necessary because of the smaller size of the core
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atoms.  As shown in Fig. 8.1C, the densest clusters formed at the center of the MV, although

weaker false targets were also detected in the myocardium off to the side of the ventricle.  To

eliminate these false targets, the following criterion was established for the formation of

appropriate pairs of clusters.  Only slab-like clusters located further from the transducer than

cylindrical clusters were permitted to form pairs.  These pairs voted for their constituent

clusters weighted by the product of the cosines between the orientations of each of the two

clusters and the vector between them, in the spirit of face-to-faceness as (developed in Section

3A).  The voting permitted a mean MV location and a mean LV cylinder location to be

computed for each scan.  The vector between these two mean locations established a cone for

expected unpaired boundary points at the apex of the LV and the mean distance to such apical

core ions was used to determine the location, along that vector, of the apical cap.  Thus an

apex-to-mitral valve (AMV) axis was determined, as shown in Fig. 8.1D.

The entire procedure that produced Figs. 8.1B, C, and D was automatic and required

approximately 10 seconds per 3D scan on a 400 MHz Pentium computer (each scan holds

approximately 2 million 8-bit voxels).
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Fig.  8.2    A.  Error (cm) between manual and automated placement of mitral valve (MV)
end-point of apical-mitral-valve (AMV) axis for all 155 3D ultrasound scans.   B.  Error

between manual and automated placement of apical end-point of AMV axis, for all 155 scans.
C.   Error for the apical end-point for a random subset of 65 scans corrected for bias measured
in the remaining 90 scans, reducing the RMS error from 1.4 to 0.7 cm. (See Fig 15D for scale

of 1 cm.)
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The anatomical end-points of the AMV axis (the ventricular apex and the center of the MV)

were also determined manually, as follows.  A human operator was instructed to follow the

general cylindrical shape of the left ventricle, marking the ventricular apex and the center of the

MV on B-mode and C-mode slices.

The data included 18 RT3D scan sequences of in vivo human hearts, using a Volumetrics

Model-1 scanner operating at 2.5 or 3.5 MHz.  Of the 18 sequences, 12 were described as

normal, 4 as dilated cardiomyopathy, 1 as akinetic, and 1 as pericardial effusion.  In each

sequence, only scans in which the MV was closed were used, for a total of 155 scans.   All

parameters for the method were established during its development using several normal

sequences, none of which were included in these 18 sequences.

The locations of the manual end-points were compared to those determined automatically

for all 155 scans, as shown in Figs. 8.2A and 8.2B.  The error reported is simply the total

physical distance (cm) in 3 dimensions between the manual and automated end-points.  For

reference, a scale of 1 cm is marked on the cardiac scan in Fig. 8.1D, with the pyramid of a

typical scan having a height of approximately 15 cm.  As can be seen in Fig. 8.2A, for most

scans the center of the MV was correctly located within 2 cm (RMS error 1.2 cm).  The

greatest error was slightly more than 3 cm.  For the apex of the left ventricle, the greatest error

was approximately 2.5 cm (RMS error 1.4 cm).

These errors were improved by eliminating a consistent bias between manual and

automated measurements. The scan sequences were divided blindly into two groups (training

and experimental) without regard to image quality, distributing normal and abnormal hearts

evenly, and placing the akinetic and pericardial effusion scans in the experimental group.

Error for the LV apex is displayed in Fig. 8.2C, with only the experimental group (65 scans)

shown, corrected for bias observed in the training group (90 scans).  Correcting for bias

yielded an RMS error of 0.7 cm (x = 0.37 cm, y = 0.47 cm, z = 0.41 cm) for placement of the

LV apex, and 1.1 cm (x = 0.48 cm, y = 0.62 cm, z = 0.72 cm) for the MV.  The automated

placement of the LV apex tended to be  further into the ventricular chamber (average of 1.2 cm

further away from the transducer) than the manual measurement.  This bias may have been due

to greater local curvature at the LV apex than would have been expected from the simple model

of an untapered cylinder with a hemispherical cap, since a typical LV actually narrows

considerably as it approaches the apex.  Another possible explanation for the bias is that the

axis, as determined by the LV and MV clusters, is not centered perfectly as it extends into the

apex, leading to contact along the wall rather than at the apex.  Other sources of error include

sampling in the boundary detection and ambiguities in the correct location of the landmarks by

manual placement.
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8B.  Measuring Balloons with Core Atoms

This section describes the empirical validation of a method of determining volume using

core atoms directly on fluid-filled balloons in a bath, in the same manner as mean core atom

length was determined on parametric objects in Chapter 4 (see Table 4.2).  The method worked

quite well on the balloons, which represent uncluttered targets with sharp boundaries.  The

technique was less successful when applied to the left ventricle and was replaced with the

Fuzzy Fill method for that application, as will be described in Sections 8C and 8D.

Fig.  8 .3 .   Core atom clusters in a balloon (from the inside boundary of the intensity ridge)
identified as cylindrical along the axis of the balloon, although a significant number of core

atoms actually formed vertically through the balloon as well.

The ability to accurately measure volume of real objects in 3D ultrasound data using core

atoms was demonstrated on a series of 7 balloons filled with an ethanol-water mixture of

known density. The volume of the balloons was determined by weight, ranging from 58.0 ml

to 83.1 ml.  The balloons were scanned in a bath of the same mixture using the prototype

RT3D ultrasound scanner developed at Duke University known as "T4".  Boundariness was

found using a Difference of Gaussian, with 6 applications of a binomial kernel (see Appendix

B).  Core atoms with lengths ranging from 2.3 to 7.8 cm and face-to-faceness of greater than

0.88 were collected from each scan.  A center of mass was computed for all core atoms in each

scan.  The majority of core atoms formed a roughly spherical Koosh ball configuration as
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shown for the sphere in Fig. 3.8.  An example of clusters from one balloon is shown in Figs.

6.4 and 6.5 and visualized in 3D in Figs. 6.6 and 8.3.  Volume measurements were performed

simply by selecting core atoms within 1 cm of the center of mass of all core atoms in the image,

since the image was uncluttered by other targets.  The mean length of these core atoms (divided
by 2) yielded an effective radius r   from which a volume was calculated using v = 4 3( )π r3 .

This automatically determined volume was compared to balloon volume, determined by

weight.  This method of volume calculation is distinct from, and simpler than, the fuzzy

segmentation technique applied to the LV in Section 8E.
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Fig.  8.4   Radius of fluid-filled balloons determined automatically using core atoms to analyze
3D ultrasound images, compared to radius of the same balloons determined by weight
assuming a spherical shape.  (x) outer facing boundary, (+) inner facing boundary, (o)

weighted average of inner and outer boundaries, with weight determined to minimize RMS
percent error by volume to 6.5%.
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A complication arose because the skin of a balloon in ultrasound presents a dark-light-dark

ridge in intensity rather than a single dark-light transition (again see Fig 8.3). This ridge causes

boundary points to change orientation as one crosses the skin of the balloon.  Using the inward

facing boundary points to form core atoms yields a smaller radius than expected, while using

the outward facing boundary points (by switching the polarity, defined in Section 3.1) yields a

larger radius than expected.  These results for the two cases are marked "+" and "x"

respectively in Fig. 8.4.
An optimum weighted average radius r = kr I + 1 − k( )rO  was computed from the inner

radius rI  and the outer radius rO  by minimizing the RMS percent error between the resulting

calculated volume and that determined by weight, for the set of 7 balloons.  The optimum value

for k  was 0.38, favoring the outward facing boundary points, yielding an RMS percent error

by volume of 6.5%, which agrees favorably with previous measurements on the same balloons

using a Hough transform (Stetten, Caines et al. 1995).  The weighted average radii (marked

"o" in Fig. 8.4) yielded a linear regression (dotted line) close to unity (slope = 1.03, intercept

= 0.081 cm).

This measurement of balloon volume was completely automated and took advantage of the

fact that many individual measurements were combined statistically.  In a sense, each core atom

serves as a yard-stick crossing the sphere near the center. Since generally the selected core

atoms are chords of the sphere and not true diameters (as shown in Figs. 4.1C and 8.5), they

can be expected to underestimate the actual diameter.  This may explain the bias towards the

outer surface in  optimum value for k .  Another reason for this bias may be that the balloons

were generally ellipsoidal with a single major axis along the ultrasound beam, producing a

propensity of shorter core atoms across the two minor axes.

b1

b2

r

p

Fig.  8.5   Proposed correction for measurement with core atoms displaced from the center.
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The displacement vector   
r 
p  of a core atom relative to the center of a cluster (see Fig. 8.5) could

theoretically be used to correct for the difference in length between a chord and a diameter.

This would apply for the cylinder and the sphere, but not for the slab, since no such

displacement occurs in a slab.  This proposed correction has not been tested to date and

remains in the list of future work.

8C.  Manual Tracing of LV Volume

Manual tracing was performed on short axis slices through the LV.  The slices were

produced orthogonal to manually identified endpoints of the AMV axis, using cell projection of

I-mode slices created using the 3-Stripes algorithm developed in Section 6D.  A stack of 16

parallel slices was collected for each scan.  Volume was calculated for comparison with the

automated method in Section 8D by multiplying the area within all of the traces by the slice

thickness.  The results were stored along with the physical coordinates of the traces for

comparison with the automated method in 8E.  Visualization of the traces superimposed in 3D

on B-mode images was used to verify their accuracy (see Fig. 8.6).

8D.  Computing LV Volume with Core Atoms

The general approach used on balloons in Section 8B was applied to the left ventricle.

Once the AMV axis was computed (as described in Section 8A), a set of wedges in a

cylindrical coordinate system was established around the axis (as in Fig. 7.2B) and a mean

radius to boundary points in each wedge computed, thus establishing a surface map for the LV.

Missing portions of the surface map (containing no boundary points) were interpolated using

2D convolution on the surface map.  Volume was computed for the ventricle using the

cylindrical model.  A sample is shown visualized in 3D in Fig. 8.6C, with the AMV axis in

yellow and the surface map shown as a grid of dots with each dot representing a mean radius.

The results of this application of core atoms to measure volumes was far less encouraging

than the corresponding application to determining balloon volume.  The results are not reported

here because the experiment was terminated.  Although the core atoms had successfully found

the AMV axis, they did so by forming from both endocardial and epicardial boundary points.

These two surfaces are roughly concentric cylinders, and therefore they share the same axis.

However, the core atom populations do not accurately represent the ventricular chamber

because of the presence of the longer epicardial core atoms.
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A.  Cylinder of ventricle                                            B.  Slab of mitral valve

C.  Automated axis and surface map                           D.  Manual tracings of ventricle

Fig.  8.6  A. Color version of Fig. 8.1B with color mapped from lambda triangle as in Fig.
4.9.  B.   Color version of Fig. 8.1C.    C.   Automated surface map for the LV.

D.  Manual identification of left ventricle achieved by manual tracing on I-mode slices.
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8E.  Testing Fuzzy Segmentation of the LV

Although core atoms successfully identified the AMV in section 8A, they overestimated

ventricular diameter in section 8D because they formed at both the endocardial and epicardial

boundaries.   This behavior led to the development of the fuzzy segmentation method based on

voxel intensity and location described in section 7B.

The present section describes the application of the fuzzy segmentation method to the same

set of in vivo human hearts for which the AMV axis was automatically established in section

8A.  From the fuzzy segmentation, LV volume is computed and an effective endocardial

surface determined.  The results are analyzed against manual tracings as a gold standard.

The RT3D ultrasound sequences were divided into the same training and test sets as in

Section 8A.   The training set was used to optimize the method's parameters in terms of

accuracy of volume measurement and to measure bias in the measurement using regression.  Of

the many parameters in the overall process, those which were adjusted included the shapes of

the surface model in Fig. 7.10 and the probability curve in Fig. 7.12.  Only a few iterations

were performed.  Fully optimizing these and other parameters in the method is beyond the

scope of this dissertation.  The method was then applied to the test set without further

adjustment of parameters.  The resulting measurements were compensated for the bias found in

the training set.

Fig 8.7  Region of interest (bright) and LV surface model (dark) superimposed on
ultrasound data.
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Fuzzy segmentation proceeded for each heart as follows: once the AMV axis was

automatically established as in section 8A, a region of interest (ROI) and an expected boundary

of the ventricle were established around the AMV axis using the surface model illustrated in

Fig. 7.10.  Scaling factors Sa
′  and Sm

′   were determined by the MNM model as described in

section 7B.  In Fig. 8.7 an example of an ROI (bright) encompassing an LV surface model
(dark) is shown located, oriented, and scaled by the MNM.  A probability pL j( )  was

computed for each voxel based on its r  and ϕ  relative to the surface model, using the

probability function in Fig. 7.12.  An example of pL j( )  for one image is shown in Fig. 8.8.

Fig.  8.8   The probability pL j( )  for each voxel with values ranging from 1 (white) inside

and 0 (black) outside the expected ventricle.

A weighted mean of voxel intensity I  within the ROI was then computed using Eq.
7.19 with each voxel in the ROI being weighted by its pL j( ) .  The weighted mean  I  was

used to compute pI j( )  for each voxel using the probability function in Fig. 7.13.  An

aggregate probability pA j( )  was then computed for each voxel using Eq. 7.21 and a

corresponding total volume vA  was calculated using Eq. 7.22.  The aggregate probability is

shown in Fig. 8.9 with values ranging from 1 (white) to 0 (black).  As may be seen, pA j( )
is affected by both pL j( ) , which dominates the overall distribution, and pI j( ) , which

accounts for finer detail.

It is clear from Fig. 8.9 that the fuzzy segmentation method does not yield a reasonable

probability for each individual voxel.  The fuzzy representation lacks an explicit surface and

therefore also lacks a distinct topology.  The dark areas corresponding to non-ventricular

structures, such as the mitral valve and epicardium, clearly do not make topological sense
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floating disconnected from each other.   Only in certain statistical operations, such as the

computation of volume, is the fuzzy shape representation reasonable.

Fig.  8.9   The aggregate probability pA j( )  for each voxel with values ranging from 1

(white) to 0 (black).

An analysis of the accuracy of the fuzzy segmentation method was based on manual

tracings performed on the same data.  Each image was manually analyzed as follows:  the end

points of the AMV axis were established manually and a stack of I-mode slices was created

orthogonal to the axis, as described in Section 6D.  Manual tracings were performed on each I-

mode slice by a single operator, the author.  An example is shown in Fig. 8.10A.

Segmentation was then performed by examining each voxel in the data for its location relative
to the traces.  A probability pT j( )  of the  jth voxel being within the manual tracings was

computed by projecting the voxel location onto the nearest I-mode slice in the stack.  If the
projection placed it inside the corresponding manual tracing, then pT j( ) = 1.  Otherwise,

pT j( ) = 0 .  If the voxel was located such that it projected onto the AMV axis beyond either
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endpoint , then pT j( ) = 0 .  Figure 8.10 B shows the result of this process.  A volume vT  was

then computed from the tracings by

vT = pT j( )
j∈ROI
∑ v j( ) (8.1)

where v j( )  is the volume of voxel j .  Recall that v j( )  is not constant in the azimuth-elevation

coordinate system (see Section 6A).  Manual tracings were performed three times by the

observer, each time with individual manual placement of the AMV axis.  The arithmetic mean

v T  of the three resulting values of vT  was computed.

                          A                                                        B

Fig.  8.10   A. Manual tracings.    B.  Corresponding set of labeled voxels with white
symbolizing pT j( ) = 1 and black, pT j( ) = 0 .

Results for the training data are shown in Fig. 8.11 comparing vA  from the aggregate

probability method against v T  from the 3 manual tracings.  The correlation coefficient  is
R = 0.88 and the standard error of the estimate is Sx , y = 10.4 ml .   The standard deviation

between treatments for vT  computed from the 3 manual tracings is 20.7 ml.  Using slopes and

intercepts from the training data, compensated volumes were computed from automated

volumes determined from the training data and compared to the mean volume from the 3
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manual traces.   Results are shown in Fig. 8.12 with an RMS error of 25.9 ml.  This

represents absolute accuracy using new data with compensation for bias from the training data.
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Fig.  8.11   Training data: automated volume vA  vs. manual volume v T  for all 88 scans.
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Fig.  8.12   Test data compensated with slope and intercept from regression on training data:

automated volume vA  vs. manual volume v T  for all 65 scans.
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Improved results are possible if, instead of total volume, change in volume for a given

heart is measured.   Closer inspection of Fig. 8.12 shows several distinct bands in the data,

suggesting that the method is sensitive to variations between the scans on individual hearts.   A

further analysis shows this to be the case.  Each heart in the data appears in a sequence

containing between 3 and 14 images.  The difference between volume from each image and the

mean volume for its particular sequence is plotted in Fig. 8.13 for manual vs. automated

compensated volumes performed on the test data.   A reduced RMS error of 9.2 ml is seen for

volume change within a given heart.  The ability to accurately determine change in volume has

clinical significance even if total volume is not as accurate, since volume change can yield

stroke volume or provide a measure of heart function over the course of short-term therapy.
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Fig.   8.13   Delta Volume for test data computed as difference from the mean for automated

vs. manual volumes for all 65 scans.

It is desirable to conduct a more detailed comparison between the automated and manual

segmentations, taking local boundary location into account.  The accuracy of segmentation is

not well judged solely by comparing total volume, since an object's volume says nothing about

its location and since different shapes many have the same volume.

Using the medial framework already established, error between the manual and automated

segmentations can be localized in spherical coordinates ϕ , ω , and r  (see Fig. 7.10).

Longitude ω  is not a parameter in the ventricular surface model, but real ventricles are

asymmetrical around the AMV axis and segmentation error are therefore expected to be

likewise asymmetrical.  Since all the scans in the data were performed using the same
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transducer orientation including rotation around its axis, error can be correlated as a function of

both ϕ  and ω .

For each image, the mean location for the AMV axis from the 3 manual tracings served as a
common frame of reference for comparing the three manual segmentations pT j( )  against the

automated segmentation pA j( ) .  In each case, voxels were sorted by ϕ  andω  to produce sets

of voxels.  Each set S ϕ,ω( )  contained all the voxels in a given wedge from which volumes

vT ϕ,ω( )  and vA ϕ,ω( )  were calculated, respectively

vT ϕ,ω( ) = v j( )pT j( )
j ∈S ϕ ,ω( )
∑        and         vA ϕ,ω( ) = v j( )pA j( )

j ∈S ϕ , ω( )
∑ (8.2)

Although the segmentations were based on voxels, an effective radial distance within each

wedge was computed using the standard formula for the volume v  of a solid angle ∆ϕ∆ω  in a

sphere of radius r

v =
r 3

3
sin ϕ∆ω∆ϕ   . (8.3)

The effective radius r ϕ ,ω( )  for a particular wedge was determined by the volume v ϕ,ω( )  of

that wedge,

r ϕ ,ω( ) =
3v ϕ,ω( )

sinϕ∆ω∆ϕ
 
 
  

 

1

3

. (8.4)

The effective radius r ϕ ,ω( )  over the domain of ϕ  andω  represents an endocardial surface

map referenced to the AMV axis, and can provide a local measure of segmentation error.
Using Eq. 8.4, an automated endocardial surface map r A ϕ,ω( )  was computed from vA ϕ,ω( ) ,

and 3 manual surface maps rT ϕ,ω( )  were computed from the respective determinations of

vT ϕ,ω( )  for the 3 sets of manual traces.  An arithmetic mean surface map r T ϕ,ω( )  for the 3

individual rT ϕ,ω( )  was also computed to represent a mean manual tracing.
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Fig.  8.14   Training data:  Correlation between endocardial surface maps from automated

r A ϕ,ω( )  and manual r T ϕ,ω( )  analysis.  Local correlation coefficient (A) and standard error of
the estimate (B) shown as a function of ϕ  and ω .

Results for the training data are shown in Fig. 8.14 comparing r A ϕ,ω( )  with r T ϕ,ω( )  by

plotting the correlation coefficient and standard error of the estimate as functions of ϕ  andω .

The correlation coefficient within a given wedge is in the 0.6 to 0.8 range, representing fairly

good correlation between boundary locations in different images.   The standard error of the

estimate falls in the range 0.2 to 0.6 cm, and is seen to be greatest at the apex and the mitral

valve.
The test data were then analyzed and r A ϕ,ω( )  calculated for those data.  The linear

regression computed from the training data was used to compensate r A ϕ,ω( )  from the test data

for expected bias.  The RMS error with respect to the mean manual tracings r T ϕ,ω( )  for the

test data is shown in Fig. 8.15B.  In general, the error falls in the 0.2-0.8 cm range, with

errors up to 1.8 cm occurring near the mitral valve.  The large spike near the mitral valve may

correspond to the aorta, which leaves the LV adjacent to the mitral valve and provides an

ambiguity as to inclusion in the ventricle.  Considering the general scale for the ultrasound

scans of 15 cm, the general dimensions for the ventricle of 3-7 cm, and the poor visibility of

the endocardium in the ultrasound images, these results seem a rather good achievement.

115



To gauge the precision of the manual tracings, the standard deviation between rT ϕ,ω( )
from each of the 3 tracings was computed, shown in Fig. 8.15A.  Intraobserver error is in the

range 0.1 to 0.4 cm, less than the error from the automated results.  For the manual tracings,

the error is greatest at the mitral valve, with the apex located relatively accurately.  Inter-

observer error based on more than one human operator would likely be larger, perhaps

comparable to that of the automated system.  Determination of inter-observer error should be

carried out in future work.

This section has shown empirically that fully automated segmentation of the cardiac LV in

RT3D ultrasound data is possible using statistical analysis of medial primitives to establish the

AMV axis and subsequent fuzzy segmentation based on voxel intensity and location relative to

that axis.  The next chapter will discuss the strengths and weaknesses of the various methods

developed in this dissertation, and possible future directions for research.
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Fig.  8.15   A.  Training data:  Standard deviation in endocardial surface maps rT ϕ,ω( )  from
3 sets of manual traces shown as a function of ϕ  and ω .  B.  Test data:  RMS error between

endocardial surface maps r A ϕ,ω( )  compensated for bias

and r T ϕ,ω( )  as a function of ϕ  and ω .
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