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Abstract— We present a novel and relatively simple method for 
clustering pixels into homogeneous patches using a directed 
graph of edges between neighboring pixels. For a 2D image, the 
mean and variance of image intensity is computed within a 
circular region centered at each pixel. Each pixel stores its 
circle’s mean and variance, and forms the node in a graph, 
with possible edges to its 4 immediate neighbors.  If at least one 
of those neighbors has a lower variance than itself, a directed 
edge is formed, pointing to the neighbor with the lowest 
variance. Local minima in variance thus form the roots of 
disjoint trees, representing patches of relative homogeneity. 
The method works in n-dimensions and requires only a single 
parameter: the radius of the circular (spherical, or 
hyperspherical) regions used to compute variance around each 
pixel.  Setting the intensity of all pixels within a given patch to 
the mean at its root pixel significantly reduces image noise 
while preserving anatomical structure, including location of 
boundaries.  The patches may themselves be clustered using 
techniques that would be computationally too expensive if 
applied to the raw pixels.  We demonstrate such clustering to 
identify fascicles in the median nerve in high-resolution 2D 
ultrasound images, as well as white matter hyperintensities in 
3D magnetic resonance images. 
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I.  INTRODUCTION 
A central challenge in the segmentation of medical 

images is extracting useful anatomical information from 
nonhomogeneous structures in the presence of noise.  In our 
recent work, we have developed what we call the Shells and 
Spheres (SaS) framework to enable a statistical approach to 
segmentation that scales the sample size for intensity to the 
particular object being segmented. We use the word sphere 
for convenience, since the approach actually works in n-
dimensions, and by sphere we also mean the entire volume, 
not just a spherical surface. This is analogous to what Attali 
describes as balls for extracting skeletons from 
predetermined shapes [1]. In the SaS framework, we define 
an integer r as the radius in units of inter-pixel distance, 
assuming an isotropic image grid.  A shell of radius r 
centered at pixel location x contains any pixel whose 
distance from x rounds to r. A sphere of radius r is the union 
of all shells with radii less than or equal to r.  These 
definitions extend to n-dimensional shells and spheres.  

Spheres centered at every voxel may grow or shrink by 
adding or deleting an outer shell, performing incremental, 
and thus efficient, computation of mean and variance of 

pixel intensity of the pixels within a sphere. For spheres that 
extend beyond the boundaries of the image, only pixels 
within the image are used to compute mean and variance.  
Thus, no assumption is made about the value of pixels 
outside the image. This is an advantage over standard 
methods such as convolution, which generally require 
assumptions to be made about the values of pixels outside 
the image. 

We have developed a number of algorithms using the SaS 
framework and applied them to medical images [2-6], for 
example, to analyze the shape of the amygdala in MRI 
images of the brain [3]. These have in general allowed the 
radius to vary with pixel location and have looked at 
relationships between the statistics gathered from adjoining 
spheres on opposite sides of object boundaries. We present 
here a simpler algorithm based on the same framework, 
which uses single radius for all spheres and creates a graph 
structure based on comparisons of variance between spheres 
centered on neighboring pixels. The single radius of all 
spheres is the parameter in the initial algorithm. 

II. DEFINITION OF ALGORITHM 
Given the integer radius r of spheres centered at every 

pixel in the image, mean and variance are computed for 
intensity within each 
sphere, and these 
values assigned to 
each corresponding 
central pixel. The 
spheres centered at 
neighboring pixels 
overlap considerably, 
especially as r is 
permitted to grow.  

A comparison is 
made of the variance 
at each pixel x with 
that of each of its 
neighboring pixels (4-
connected in 2D, 6-
connected in 3D).  If 
any of its neighbors 
has a lower variance, 
pixel x is made to 
“point” to the 
neighbor with the 
lowest variance.  If 

Fig. 1.  Directed edges (arrows) 
between pixels (circles) 

representing decreasing intensity 
variance of spheres centered on 

those pixels.  Three disjoint trees 
form 3 patches (different level of 
gray) each with its root (square) 

and sources (open circles). 
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pixel x has a lower variance than any of its neighbors, it does 
not point to any other pixel. 

The situation is depicted in Fig. 1, which shows the 
pixels in an 8× 8 two-dimensional image as small circles 
(either filled or empty). Arrows are present between 
neighbors, such that each pixel either points at one of its 
neighbors, or, in certain cases (within the square boxes) the 
pixel does not point to any neighbor at all. 

Using the terminology of graph theory [7], we have 
created a graph made up of nodes (pixels) connected by 
edges (the arrows between neighboring pixels). Our graph, 
which we call the Descending Variance Graph (DVG), is a 
simple directed acyclic graph. It is simple because there are 
no loops (edges between a node and itself), and because 
there exists at most one edge between any two nodes.  A 
DVG is directed because each edge is oriented from one 
node, pixel x, to another node, pixel y, as shown by the 
arrows in Fig. 1.  The edge, e = (x,y) is said to be directed 
from x to y. (Note that we use bold to denote our nodes, 
because, in addition to being in a graph, they also inhabit the 
n-dimensional domain of an image.) The node x is said to be 
the direct predecessor of y, and conversely y is the direct 
successor of x.  If a path consisting of multiple directed 
edges leads from node u to node v, then u is said to be 
simply a predecessor of v, and v a successor of u.  The DVG 
is acyclic because no paths exist by which a node may be the 
successor to itself. 

The number of edges reaching a node is the node’s 
degree.  The DVG is allowed to branch such that a given 
node can be the direct successor of multiple other nodes but 
the direct predecessor of only one other node.  This can be 
formally expressed by saying that a node in the DVG may 
have an indegree of greater than 1,  

 
deg− x( ) = 0,1, 2,3, 4...         (1) 

 
but an outdegree of at most 1.   

 
deg+ x( ) = 0,1    (2) 

 
A sink is a node with no successors and thus an outdegree 

deg+(x) = 0.  A source is a node with no predecessors and 
thus an indegree deg−(x) = 0.    

Since each node in our DVG can have at most one direct 
successor, no two directed paths from a node can re-
converge at a successor node.  Thus a DVG consists of one 
or more of a particular kind of directed acyclic graphs called 
a directed tree. Since any particular directed tree in the DVG 
has edges directed towards a single sink, it is more 
specifically called a rooted tree, with the root node being the 
only sink in that tree.  The sink of a given tree in a DVG 
represents the node with lowest variance for that tree.  Since 
the trees are disjoint (their nodes do not overlap) the DVG 
for the whole image is, itself, called a forest.   

Looking back at Fig. 1, we see that this particular forest 
contains 3 disjoint trees, each representing a region or 
“patch” depicted by a different level of grayscale, and each 

with its own unique root (square box).  Nodes that are 
sources (open circles) tend to be at the outsides of the 
patches, but not always.  Also note that a root (in a 2D 
image) will usually have an indegree of 4, though it is 
possible for a root to have an indegree of 3 or less. 

Once mean and variance have been computed for spheres 
of a given radius r throughout the image, comparisons are 
made between the variances of neighboring pixels and the 
edges of the graph formed.  Roots are identified by having an 
outdegree of zero, and a recursive flood-fill operator used to 
connect a given root to all the nodes of its tree.  Except for 
the initial computation of mean and variance, the algorithm 
is an O(n) operation, where n is the number of pixels. 

The resulting trees represent relatively homogenous 
regions. Each root is a local minimum of variance, whose 
sphere is generally within its own relatively homogenous 
patch, surrounded by pixels with higher variances that 
“drain” into it. Each patch is separated from neighboring 
patches by a ridge in variance, whose spheres overlap 
boundaries between one relatively homogenous region and 
another.  The system is self-normalizing, with the only 
parameter being radius r. 

We next present some preliminary results using two 
different applications in neurological imaging. 

III. RESULTS IN 2D WITH ULTRASOUND  
Nowhere is automated analysis more problematic than in 

ultrasound, where high noise and variability in image 
intensity make reliable segmentation difficult.  We are 
currently using high-frequency ultrasound to monitor 
regeneration after hand transplant surgery and peripheral 
nerve injury, and to determine the efficacy of experimental 
drug therapies [8]. Accurate identification of changes in 

Fig. 2 Descending variance graphs applied at various radii 
(in pixels) to an ultrasound image of the median nerve.  

Radius 0 denotes the original image.  Radii 1, 3, and 5 show 
reduced noise with preservation of edges and anatomic 

structure. 
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nerve anatomy such as edema, myelin debris, or 
fascicular/axonal changes could help objectively diagnose 
nerve injury or monitor nerve regeneration after trauma or 
surgery.  

Cross-sectional ultrasound scans of a human medial 
nerve were performed on a normal volunteer (author) using a 
VisualSonics Vevo 2100 scanner (with consent for human 
use) operating at 50MHz. Penetration depth was 
approximately 5mm with 30µm resolution.  Nerve fascicles 
were easily identified in the cross-sectional scans. A 
256× 256 pixel 8-bit grayscale image was used as input to 
the algorithm.   

The results are shown in Fig. 2.  The original ultrasound 
image is labeled 0.  The images labeled 1, 3, and 5, show the 
results of applying the DVG algorithm with variances 
computed using spheres of those respective radii. In each of 
these three images, the mean intensity of all pixels within a 
given patch was set to the mean of its root pixel. The 
operation preserves anatomical structure, including edge 
location, while significantly reducing noise.    

Since a goal of creating the patches is to permit further 
analysis to proceed with fewer elements than raw pixels, we 
examined the number of patches as a function of radius for 
the ultrasound image and for an image containing pure 

Gaussian noise (mean 138, standard deviation 10). Both 
were 256 × 256 pixel 8-
bit grayscale images, 
containing 65536 pixels. 
At a radius of 1, both 
images yielded 
approximately 10% as 
many patches as pixels 
(see Fig. 3).  But 
whereas the ultrasound 
image showed a 
continuing monotonic 
reduction in the number 
of patches with 
increasing radius, the 
image of pure noise 
showed no such 

reduction.  Evidently the patches are organizing anatomical 
content. 

We next clustered DVG patches to identify fascicles in 
the ultrasound image.  For each root, we identified all other 
roots within a radius of 18 pixels.  This parameter was 
chosen to match the general size of a fascicle. We calculated 
the variance of the intensities of these patches and connected 
neighboring patches with directed edges, as we had done 
previously with pixels.  The roots of these trees are shown in 
Fig. 4.  Only those below a certain threshold of intensity are 
shown, clearly identifying the centers of nerve fascicles.  
Admittedly, we have introduced two new parameters in this 
step: expected fascicle radius and intensity.  However, we 
consider this acceptable, since some prior information is 
required to identify particular structures. 

IV. RESULTS IN 3D WITH MRI  
To demonstrate the formation of DVG patches in 3D, we 

applied the algorithm described in section II to MRI images 
of the brain, to identify periventricular white matter 
hyperintensities.  White matter hyperintensities (WMHs) are 
seen on T2-weighted MR images in up to 50% of individuals 
over the age of 65 [9].  These hyperintense lesions are 
associated with underlying ischemic demyelination and 
gliosis [10], and have been associated with a number of 
prevalent age-related conditions including cognitive 
impairment, depression, and mobility impairment 
[11].  Image processing methods for quantifying and 
localizing WMHs would facilitate their further development 
as useful biomarkers.   

Fig. 3  The number of patches in an ultrasound image of a nerve 
drops monotonically with the radius of the spheres used to 

compute variance.  This is not true for an image with only noise. 

Fig. 4 Fascicles identified by 
roots of trees consisting of 

clustered DVG patches. 

Fig. 5  Original MRI image (left), DVG patches (right). 

Fig. 6 Patches surface-rendered in 3D over MRI slices. 
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Figure 5 (left) shows a T2 fluid-attenuated inversion 
recovery (FLAIR) image of a patient with periventricular 
WMHs. Images were collected on a 3T Siemens Trio TIM 
scanner.   The 3D version of the DVG algorithm was applied 
with a radius of 1, and a slice at the same location through 
the resulting 3D patches is shown in Fig. 5 (right). A 
threshold for intensity was applied and the patches (which 
are themselves 3D regions) were overlaid using surface 
rendering on orthogonal slices of a corresponding T1 image 
(Fig. 6).  Rendering in this manner naturally clusters 
neighboring patches into larger 3D regions, by showing only 
the outer surface of their union. 

V. DISCUSSION 
Our method has some similarities to other graph-based 

methods for image segmentation, which generally treat the 
entire image as a graph, with each pixel as a node connected 
to its neighbors by edges. Felzenszwalb and Huttenlocher’s 
graph-based segmentation [12] begins with each pixel in its 
own sub-graph, and then joins sub-graphs if the edges 
between them have a low enough weight (i.e. the pixels they 
connect are similar). Edges are examined in order of weight, 
so that “easy” connections are made first, leaving the more 
ambiguous decisions for later in the algorithm. The 
normalized cuts method [13] begins with the entire image as 
a single fully connected, un-segmented graph. The edge 
strength is determined as a function of the intensity 
difference between the two pixels it connects, compared to 
nearby pixels.  The cut-cost of each edge is computed from 
inter- and intra-sub-graph similarities, along with the edge 
strength. Segmentation is accomplished by computing the 
minimum cut (the set of edges with the smallest combined 
weight that will split a graph when removed).  Our method 
may also be considered a form of the so-called superpixel 
[14], in which over-segmentation based on local similarities 
preserves most of the structure while reducing the 
dimensionality of the overall image (and reducing noise).   

VI. CONCLUSION 
The contribution of our work, we believe, is to provide a 

simple and rapid method to reduce the noise while 
preserving meaningful structure in n-dimensional images.  
The initial step requires only a single parameter: the radius 
of the spheres used to compute mean and variance of pixel 
intensity. The technique is inherently n-dimensional. We 
have demonstrated it in neurological images in 2D and 3D.  
We are currently further exploring ways to cluster these 
patches with guidance of priors using higher-level graphs as 
well as other techniques.  
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