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We describe an active contour based on the elliptical Fourier series, and its application
to matrix-array ultrasound. Matrix-array, or Real Time 3D (RT3D), ultrasound is a
relatively new medical imaging modality that scans a 3D-volume electronically without
physically moving the transducer, allowing for real-time continuous 3D imaging of the
heart. With the goal of automatically tracking the heart wall, an active contour has
been developed using the elliptical Fourier series to find perpendicular lines intersecting
an initial contour. The neighborhood defined by these perpendiculars is mapped into
a rectangular space, called a swath, whose vertical axis represents the inside-vs-outside
dimension of the contour (perpendicular to the contour), and whose horizontal axis
represents parametric distance along the contour (tangent to the contour). A dynamic
programming technique is then used to find the optimum error function traversing the
rectangle horizontally, and this error function is mapped back into image space to yield
a new contour. The method does not iterate, but rather simultaneously searches for the
optimum contour within a limited domain. Results are presented applying the technique
to RT3D ultrasound images of in vivo hearts.

Keywords: Adaptive Contour; Snake; Elliptical Fourier; Flow Integration Transform;
RT3D Ultrasound.

1. Introduction

Real-time 3D ultrasound based on a matrix-array transducer is a relatively new
imaging modality capable of capturing 22 volumetric images of the heart per
second.1–3 This permits a potentially useful continuous measure of ventricular vol-
ume, the so-called volumetricardiogram (VCG) assuming a method can be devel-
oped to automatically locate and delineate the endocardial boundary of the cardiac
ventricle. We have previously developed the Flow Integration Transform (FIT)4,5
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and successfully performed fully automated volume determination on balloons, as-
suming them to be a stack of circular cross-sections.6 To make the FIT adaptive to
more complicated shapes, the approach described in this paper has been explored
with encouraging results. It assumes that an initial contour has been established
in the form of a Freeman chain code,7 by means of the FIT or other shape detection
algorithm, or (as in the demonstration cases presented here) by manually placing an
initial circular contour. The algorithm permits the contour to adapt to locate gra-
dients in the image, causing appropriate changes in length, shape, and location of
the contour to match the target. We make a distinction here between what usually
are called snakes, deformable contours, active contours, or active shapes,8–12 and
what has been referred to as a live wire.13,14 Whereas the former usually employ
an iterative search to maximize (or minimize) some merit (or energy) function, the
latter employ dynamic programming to simultaneously search through a domain
for the optimal solution in a single step. In the interest of speed, our method works
in the latter fashion, although, in its method of initialization, our method resem-
bles more the active contour approach, permitting greater incorporation of prior
information. We thus combine beneficial aspects of both approaches.

2. Methods

2.1. Elliptical Fourier series

The search for an optimal contour may proceed by searching in the region of the
image adjoining an initial contour. The region may be mapped by establishing
local perpendiculars to the initial contour. Finding perpendiculars to a chain code
requires some method capable of producing finer gradation in angle than is evident
from the individual steps in a chain code. Such a method is the elliptical Fourier
series. The application of the Fourier transform to image data is a classical approach
in image processing, but has also been applied to describing parametric shapes, such
as contours in 2D,15–17 or surfaces in 3D.18,19 We constrain ourselves here to their
use in describing contours in 2D.

Any closed path can be separated into periodic functions in the x and y dimen-
sions, as shown in Fig. 1.

The functions x(t) and y(t) are periodic and can each be represented by its
Fourier series.

x(t) =
a0

2
+

N∑
n=1

(an cos(nt) + bn sin(nt)) ,

y(t) =
c0
2

+
N∑
n=1

(cn cos(nt) + dn sin(nt)) .

(1)

The accuracy of the approximation depends on N and the number of samples
in the actual discrete path. Note that at each harmonic there are four parameters
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Fig. 1. The elliptical Fourier series consists of a separate Fourier series for each of the x and y
components of the parametrically described periodic function of the closed contour.

instead of the usual two:

an =
∫ 2π

0

x(t) cos(nt) dt , bn =
∫ 2π

0

x(t) sin(nt) dt ,

cn =
∫ 2π

0

y(t) cos(nt) dt , dn =
∫ 2π

0

y(t) sin(nt) dt .

(2)

By performing these discrete Fourier transforms on the x and y components of
the chain code, we can produce a spectrum with as many harmonics as desired,
limited by the Nyquist criterion to half the number of steps in the chain code.
We can now use the Fourier description of the contour to find perpendiculars to
the contour at any point. Let ẋ(t) and ẏ(t) be the x and y components of the
derivative of the contour with respect to t. Taking the derivative of the Fourier
series we get:

ẋ(t) =
N∑
n=1

n(−an sin(nt) + bn cos(nt)) ,

ẏ(t) =
N∑
n=1

n(−cn sin(nt) + dn cos(nt)) .

(3)

Let us imagine that somewhere along a given perpendicular there is a better
boundary, one to which we would like our original contour to adapt. Let us further
define the error e to be the distance from the original contour to that boundary
along the perpendicular. Using the standard slope and intercept formulation, we
can now solve for the location of the boundary point at (x(e, t), y(e, t)) as[

x(e, t)

y(e, t)

]
=

[
x(t)

y(t)

]
+

e√
ẋ(t)2 + ẏ(t)2

[
0 −1

1 0

]
•
[
ẋ(t)

ẏ(t)

]
. (4)
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We have rotated and normalized the vector (ẋ(t), ẏ(t)) to get the slope of the
perpendicular to the contour. Note that e is signed, with (e > 0) inside and (e < 0)
outside the contour. Our goal is to find an error function E(t) that links as many
of the best boundary points together as possible, within some neighborhood of the
initial contour which we call the swath.

2.2. Error function in the swath

Using the perpendiculars, we can map the region surrounding the contour, or swath,
onto a rectangular space as shown in Fig. 2. The original contour is mapped onto
the horizontal line at e = 0, which we may write as the error function e(t) = 0. One
can imagine strolling along this straightened version of the original contour from
0 to 2π, with the inside of the image on the right and the outside on the left. Al-
though originating from a 2D contour, a dimension of the contour’s shape has been
suppressed by straightening it into the horizontal dimension of a rectangular space.

After mapping the swath into this rectangular space, we then look for boundaries
running along the swath on either side of the original contour. Our goal is to
connect the optimal continuous set of such boundaries. At each location within
the swath, we find the boundary component parallel to the contour by computing
the dot product of the image gradient and the perpendicular, to come up with a
boundariness measure, B. For each location within the swath

B(e, t) =
∣∣∣∣∂I(e, t)

∂e

∣∣∣∣ . (5)

As is commonly done in image processing, the derivative operator is scaled to
prevent high-frequency noise from dominating the desired boundaries.

We calculate this boundariness everywhere within the swath rectangle, produc-
ing a 2D image as shown in Figs. 4(b) and (e). High intensity areas in the swath
rectangle represent boundaries in the neighborhood of, and parallel to, the original

�

e(t) 0

+

(inside)

(outside)

-

0 2 �

original contour     e(t) = 0

   SWATH

Fig. 2. The swath around the initial contour is mapped into a rectangular space defined by the
error function e(t) along local perpendiculars to the initial contour.
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contour, and it is these boundaries, after all, to which we hope the new improved
boundary will adapt. The optimum adaptation for the contour may be found by
maximizing the merit M of the error function, by choosing the error function which
passes through as many strong parallel boundaries as possible. (This optimum error
function is, in fact, shown superimposed on the swath in Figs. 4(b) and (e)). The
merit of a particular error function may be expressed in the continuous domain as

ME =
∫ 2π

0

B(E(t), t) dt , (6)

whereME is the accumulated merit along the particular error function E(t). Having
found the best error function

E(t) = arg max ME , ∀E (7)

a new contour can be formed by re-mapping the original contour plus the error func-
tion from the rectangular swath back into image space. We ensure the smoothness
of this new contour by constraining the maximum slew rate,∣∣∣∣∂E(t)

∂t

∣∣∣∣ ≤ 1 , (8)

and we ensure the contour’s periodicity by requiring that the error function itself
be periodic,

E(2π) = E(0) . (9)

2.3. Finding the optimum error function

To accomplish this in the discrete domain, let us store the values for B(e, t) bound-
ariness in an m× n rectangular swath matrix [again, see Figs. 4(b) and (e)], where
m is the number of samples along the perpendicular, and n is the number samples
for the parameter t over the range 0 to 2π. To find the best error function we might
compare the merit of every possible horizontal path across the swath matrix. How-
ever, we will accept the constraint that the error function must cross each column
in the matrix once and only once, i.e. that E(t) is a proper function. Furthermore,
E(t) cannot move up or down more than one step for every horizontal step along
the path, constraining its smoothness. Still, an enormous number of total possible
paths exist, O(m3n), with the number of periodic paths being only somewhat fewer,
O(3n). Luckily, this number may be greatly reduced by using the following dynamic
programming technique.

Consider the merit function for paths that cross a portion of the swath matrix,
from a first column at t = 0 to some arbitrary last column in the middle somewhere.
Let us construct the set of paths that contains every optimal path from each starting
location to each ending location, between e = f in the first column to e = l in
the last column of that portion of the swath matrix. Since f and l each have m
possible values, there are m2 paths in the set, each one being the optimal path
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from a particular starting and ending location. Our merit function Mt(f, l) for a
particular path takes two arguments, f and l, and has a single subscript denoting
the t, which is currently considered the last column. Starting with t = 0, we initialize
the accumulated merit for each path as

M0(f, l) =

∣∣∣∣∣B(f, 0) , f = l ,

−∞ , f 6= l ,
(10)

using a very large negative value (−∞) to invalidate paths whose beginnings and
endings are not identical. We then proceed to the right, at each step comparing the
merits of paths ending in the previous column in rows l, l − 1, and l + 1, choosing
to link to the one with the highest merit. We thus exclude inferior paths along
the way, and need store only m2 paths and their associated merits. The iteration
proceeds as follows:

for t = 0 to t = m− 1

Mt+1(f, l) = B(l, t+ 1) + max

∣∣∣∣∣∣∣∣
Mt(f, l − 1)

Mt(f, l)

Mt(f, l + 1)

.

(11)

Care must be taken with l + 1 and l − 1 not to exceed the limits of the matrix.
An example of the process is shown in Fig. 3, using a 3 × 3 matrix of bound-

ariness values. The algorithm proceeds column by column, from t = 0 to t = 2.
At each step, nine possible paths (including all permutations of values for f and l)
are considered. The accumulated merit of each path at each step is shown in the
table. At each step, paths link to the best of the adjacent possible previous paths,
choosing between the row above, the row below, or the same row. Only two possible
prior paths are available in the top or bottom row, to stay inside the matrix. The
boundariness of each step is then added to the accumulated merit. Choosing only
adjacent rows limits the slew rate to |∂E(t)/∂t| ≤ 1, as noted above, and is essen-
tial to the efficiency of the algorithm. The slew rate can, in effect, be adjusted by
varying n, the number of perpendiculars (columns in the swath matrix). Without a
sufficiently high n, the error function will not be able to effectively link boundaries
along the swath with widely different values of e.

At the last step, a maximum value is chosen from the subset of all periodic
paths (marked with “P” in Fig. 3), i.e. those paths whose final l is within one row
of its f . In this example, the maximum periodic path (f = 1, l = 2) has a value of
18. The path (f = 1, l = 3) has a greater value, 20, but is excluded because it is
not periodic. This constraint guarantees periodicity, and is the discrete equivalent
of Eq. (9), above. Since all permutations of values for f and l, both periodic and
nonperiodic, are considered at each step along the way, a guaranteed maximum
periodic path can be chosen from the subset of paths that are periodic at the
final step.
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f l t=0 t=1 t=2

1 1 8 8+2=10 13+3=16 P

1 2  -inf 8+5=13 13+5=18 P

1 3  -inf  -inf+4=-inf 13+7=20

2 1  -inf 1+2=3 6+3=9 P

2 2 1 1+5=6 6+5=11 P

2 3  -inf 1+4=5 6+7=13 P

3 1  -inf  -inf+2=-inf 10+3=13

3 2  -inf 5+5=10 10+5=15 P

3 3 5 5+4=9 10+7=17 P  

Fig. 3. Dynamic programming technique for finding the optimum path (bold on left, gray on
right) through the first three columns of a swath. For t = 0, all paths for which f 6= l are given a
value of −∞ (“− inf”).

To reconstruct the final adapted contour, the corresponding points along the
perpendiculars are mapped from the rectangular swath back into image space. This
series of points in image space are connected by line segments, and converted to an
8-neighbor chain code using Bresenham’s method.20

3. Results

Figure 4 shows two examples of the 1D Swath. Figure 4(a) shows a graphical heart
and a manually placed initial circular contour. The resulting rectangular swath
matrix is shown in Fig. 4(b), with the optimal error path shown in white. Rep-
resentative perpendiculars are shown in Figs. 4(a) and (b), identifying the target
boundary as it passes between inside and outside the initial contour. Figure 4(c)
shows the final adapted contour after re-mapping the error function back into image
space. A similar sequence is shown in Figs. 4(d), (e) and (f) using RT3D ultrasound
to produce a constant range slice through an in vivo canine heart with contrast in
the myocardium. The initial manually placed circular contour produces a swath
whose error function is clearly detected, yielding an adapted contour that matches
the ventricle.
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Fig. 4. Two examples of a single iteration of the swath on a graphical test object (a)–(c) and an
ultrasound image of the cardiac left ventricle (d)–(f). See text for details.
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Fig. 5. Contour initially placed on a constant range slice through the RT3D data (1) is seen
to adapt to that frame (2) and then to follow the shape of the ventricle through sequential time
frames (2)–(9).

Figure 5 shows a sequence of constant range slices through an in vivo canine
heart with contrast in the myocardium. Frame 1 shows the location of an initial
circular contour placed manually. Frame 2 shows the result of a single iteration of
the swath algorithm on the initial time frame. Frames 2–9 show sequential time
frames with a single iteration of the algorithm in each frame resulting in a fairly
accurate tracking of the endocardial border. Notice that the single significant case
of straying in frame 7 corrects itself in frame 8.

Figure 6 shows adaptation of a contour originally placed on a single slice through
a 3D scan of the cardiac left ventricle using RT3D ultrasound. Whereas in Fig. 5 the
contour adapted to a temporal sequence, in Fig. 6 it adapts to a spatial sequence
across the third dimension. The adapted contour in one slice is used as the starting
contour in the adjoining slice. The result is a stack of contours depicting the entire
3D shape of the left ventricle. This stack of paths was then used as the starting
points for the 3D data from the next time frame, similar to the process shown in
Fig. 5, but with all slices progressing simultaneously (not shown).

4. Conclusions

We have demonstrated an active contour based on an elliptical Fourier representa-
tion, which uses an efficient dynamic programming scheme to find the optimal adap-
tation to boundaries in the image within a swath surrounding the initial contour.
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Fig. 6. Contour initially placed on a single slice through an RT3D ultrasound scan of the heart
adapts through neighboring slices to match the 3D shape of the left ventricle.

It has successfully tracked the anatomical boundary of the endocardium in noisy
RT3D ultrasound data, a task with considerable clinical significance. We consider
these results very promising, and are actively exploring methods for automatically
placing the initial contour so that the entire procedure could be automatic.
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