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Abstract 
 

Purpose: We present a new algorithm for finding branching paths of maximum connectivity through 3D images.  
Our immediate application is segmenting small veins in cerebral white matter in high-field susceptibility-weighted 
magnetic resonance images, to parameterize their number, tortuosity, and branching patterns in small vessel disease. 

Methods: Our algorithm finds continuous paths with maximum connectivity.  Since the veins branch outward 
from the lateral ventricles, we use the dilation operator from mathematical morphology to create a stack of one-
voxel-thick shells outward from the ventricles. We then simultaneously explore paths between every possible 
starting and ending voxel in these shells, stepping through successive shells along continuous paths and using 
dynamic programming to efficiently eliminate inferior paths at each step.  Multiple paths with the same starting 
voxel and but different ending voxels indicate branching. 

Results: Initial results demonstrate effective and rapid 3D segmentation of small veins and identification of 
branch points. The paths accommodate local discontinuities and are thus readily parameterized as continuous 
functions. 

Conclusion: Our new algorithm holds promise for identifying and parameterizing oriented branching structures 
of high connectivity in 3D images. It has numerous potential applications, including understanding vascular and 
neurological anatomy. Validation against manual segmentation and further development is planned.  

 
Introduction 
 

We have developed a new automated algorithm to segment small veins recently identified in susceptibility 
weighted images (SWI) from ultra-high field (7T) magnetic resonance (MR) images. In SWI, the veins appear 
darker than the surrounding tissue due to the magnetic properties of deoxygenated hemoglobin [1].  The veins 
branch outward from the lateral ventricles into the surrounding white matter (the blood actually drains the other 
way, towards the ventricle).  There is compelling evidence that changes in these small cerebral vessels, including 
those due to small vessel disease (SVD), represent early pre-clinical markers of brain pathology across mental health 
disorders (e.g., [2][3]). Better characterization of these vessels may serve as an important marker for prevention and 
treatment studies.  Previously, manual tracing methods have primarily been used to identify and parameterize these 
veins [4].  Here we describe a new general algorithm that takes advantage of the known draining orientation of the 
vessels.  Our requirements are that the algorithm be fast and automated, due to the potentially large number of 3D 
images and the tedious and time-consuming nature of manually segmenting the numerous small veins. An 
automated algorithm would also be expected to decrease variability in determining parameters, especially given the 
difficulty in accurately tracing tortuous linear objects in 3D.  The ultimate goal is to provide rapid and reliable 
determination of parameters for these veins, including density, tortuosity, degree of branching, etc.  We next 
describe the basic algorithm and preliminary results. 

 

Methods 
 

To identify the veins within the cerebral white matter, we explore a large space of possible paths and find those 
paths with greatest connectivity in intensity, that is to say, paths whose voxels maintain a similar intensity from 
voxel to voxel.  Then from these paths we select those with the lowest average intensity, characteristic of veins in 
our SWI images. 

Our algorithm has evolved from a prior 2D algorithm developed for cardiac segmentation [5-7], subsequently 
extended to N dimensions and contributed to the National Library of Medicine Insight Toolkit (ITK)1 as part of its 
infrastructure supporting chain-codes [8,9].  Chain-codes are representations of parametric curves that connect 
neighboring voxels into a linear chain, specifying the direction at each step from a given voxel to one of its 
neighbors [10].  Neighbors in our case are defined as being within a 3×3×3 cube of the central voxel.  Chain codes 
are well suited as a basis for parameterizing linear objects such as veins, while providing a convenient platform for 
voxel-level image analysis algorithms.  

                                                
1 https://itk.org 



	 3 

Building on this previous work, we have further introduced a new ability to incorporate an expected direction 
using dilation. Dilation is a standard technique in mathematical morphology [11] in which a shape is expanded using 
a structuring element.  In our case, the structuring element is a 3×3×3 cube of voxels around a central voxel, from 
which repeated dilation produces a concentric set of shells, each one voxel thick, around the original shape. To 
establish the expected direction of the veins, we place the initial shape at the surface of the ventricle, and from there 
we dilate our one-voxel-thick shells outward into the white matter.  A chain-code having just a single voxel in each 
shell should then be capable of following a given vein by connecting to a voxel in the next shell, in particular, that 
voxel whose intensity most resembles its own. Building chain-codes in this manner follows the expected direction of 
the veins.  Multiple paths can inhabit a single vein, allowing branch points as the paths extend away from the 
ventricle. 

Consider a reasonable example for our application: a volume with 50 dilation shells each containing 1000 
voxels (the actual number of voxels will typically vary from shell to shell).  The number of possible paths crossing 
this volume is clearly astronomical, even with the constraints put on our chain-codes. However, we know that all 
possible paths begin with a particular voxel in the first shell and end with at a particular voxel in the 50th shell.  So, 
we restrict our search to keeping track of the optimal solution for each possible starting/ending voxel pair. In the 
case of our example, this limits our search space to 1000×1000 = 1	million paths, a large but manageable number.  
At each dilation step we exclude inferior candidates, updating the optimal path for each starting/ending voxel pair by 
connecting to the neighboring voxel in the previous shell with an intensity most similar to our own. This is an 
example of dynamic programing [12], which divides an optimization problem into independently solvable steps, 
thereby permitting the traversal of an otherwise intractably large search-space.  In our example, it produces the 
million top candidates for paths with high connectivity, excluding inferior solutions along the way.  

Since the veins are branching outward through the dilations shells, we know that each voxel in the final shell 
can represent only one branch.  Thus, we may look at all the paths reaching a given voxel in the ending shell and 
select the one with the lowest mean intensity, thereby identifying a set of just 1000 paths (in our example) that 
should contain all the veins, since the veins have the lowest intensity of any tissue in the SWI images.  

Whereas each voxel in the final shell can represent only one branch, each voxel in the first shell can represent a 
trunk with multiple branches.  Branch points may thus readily be identified by finding voxels in the first shell that 
connect to more than one voxel in the last shell, since multiple paths from a starting voxel can inhabit the trunk of a 
vein that branches to multiple voxels in 
the ending shell.  Thus it may be seen 
that the dilation shells organize the 
image analysis of our application to find 
the veins in their expected orientation 
and branching direction. 

Our algorithm presently uses 
routines from the ITK and the 
Visualization Toolkit (VTK)2, as well as 
custom C++ functions operating directly 
on arrays for maximum efficiency.  It 
operates in both the OSX and Windows 
environments.  For the results described 
below, we used an Apple 3.1 GHz 
PowerBook. 

 

Results 
 

An image of the brain was obtained 
using a 7-Tesla MRI scanner and the 
SWI protocol.  The data was cropped to 

                                                
2 https://www.vtk.org 
 

Fig. 1.  Susceptibility weighted 
MRI of veins in the cerebral white 
matter branching out from the 
ventricle (see text). 

Fig. 2.  Sum of paths 
(equally weighted) resulting 
from application of 
algorithm to image in Fig. 1. 
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a volume containing 80×105×5 voxels, a slice through which is shown in Fig. 1.  Veins are evident extending 
toward the right from the ventricle (the ventricle is not well differentiated from the white mater in this image, but 
occupies the relatively homogenous region in the left portion of the image). An initial shape with a face roughly at 
the surface of the ventricle was used for the dilation of 50 shells, each of which containing	105×5 = 525 voxels.  
Thus, roughly a quarter of a million paths (525×525) were maintained as the algorithm proceeded through the 50 
shells from left to right.   

The 525 paths with the lowest average intensity that reached each ending voxel were summed into an image 
whose Maximum Intensity Projection (MIP) is shown in Fig. 2.  The individual paths were equally weighted, so that 
pixel intensity serves as a histogram of the number of paths passing through each voxel. Comparing Figs. 1 and 2, it 
is clear that the significant veins have been identified, keeping in mind that Fig. 1 is only a slice through the volume, 
while Fig. 2 is a projection of the entire volume.  Branch points are clearly evident in Fig. 2.  Total time for the 
algorithm was approximately 2 seconds. 

One artifact is evident at the far-right side of Fig. 2. Since we are displaying one path reaching each of the 
voxels in the ending shell, multiple tiny branches appear that do not necessarily correspond to veins.  These could be 
eliminated by introducing various parameters, such as intensity, connectivity, or expected branching pattern.  
However, we are looking for a way to eliminate them without introducing such a parameter, since a strength of the 
algorithm is its lack of parameters.  

  
Conclusions 

 

We have presented a new algorithm for identifying oriented branching structures of high connectivity in 3D 
images, which builds chain-codes through dilation shells to follow the expected direction of the veins and their 
branching structure. The algorithm appears to work well, identifying the significant veins visible in a test image.  
Validation against manual segmentation is planned.  We expect to develop the algorithm further to provide rapid and 
reliable determination of parameters for the small veins, including number, tortuosity, and degree of branching.   
The algorithm may have other applications, including segmentation of other vascular or neurological anatomy. 
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