Evaluating Discrete Period Quadrature for Time-Frequency Analysis using Various Features of the Magnitude and Phase Spectra

Julia Foust, George Stetten Department of Bioengineering, University of Pittsburgh

Background	Purpose of Study
• Nystagmus: visual impairment characterized by involuntary, repetitive eye motion	• Evaluate the use of four spectral features produced by Discrete Period Quadrature (DPQ)
• Perception of unstable visual field - oscillopsia	1. Global maximum magnitude at signal period
• <i>StabilEyes</i> : mobile application to compensate for unwanted nystagmus eye motion	2. Local minimum magnitudes at subharmonics of signal period
• "Shift" on-screen images at the correct frequency and phase in real time	3. Global minimum variance of magnitude at signal period
• Need efficient, accurate method of tracking frequency and phase of periodic eye motion	4. Global minimum RMS delta phase error at signal period

Methods

• DPQ definition, for each period p and (discrete time) index n, for discrete signal s[n]:

$$Q[p,n] = \sum_{m=n}^{n-p+1} \frac{s[m]\left(\cos\left(\frac{2\pi(m-n)}{p}\right) + j\sin\left(\frac{2\pi(m-n)}{p}\right)\right)}{p}, 2 \le p \le P$$

- Signal period p_s inferred using one of the following features:
 - 1. <u>Peak</u>:

|Q[p, n]| has global maximum at $p \cong p_s$

2. <u>Subharmonic</u>:

|Q[p,n]| has local minima at $p \cong kp_s$, k = 2, 3, 4, ...

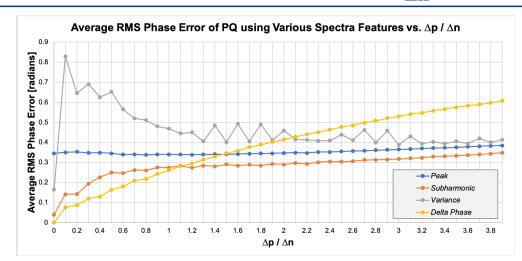
3. <u>Variance</u>:

VAR(|Q[p,n]|) has local minima at $p \cong kp_s$, k = 1, 2, 3, ...

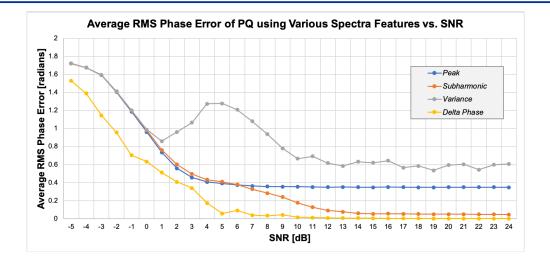
4. <u>Delta Phase</u>:

RMS error of $\left[\angle Q[p,n] - \angle Q[p,n-1] \right] - \frac{2\pi}{p}$ has global minimum at $p \cong p_s$

 $\begin{bmatrix} 1 \\ i^{\prime} i^{\prime$


Magnitude and phase spectra at $p_s = 50$. The green and yellow lines denote p_s and its subharmonics.

- Experimental: using sinusoidal signal with (1) changing signal period & (2) Gaussian Noise
- Observational: real-time with interactive **non-sinusoidal waveform (sawtooth)**


Results & Conclusions

Changing Signal Period $(\frac{\Delta p_s}{\Delta n})$

Noisy Signal

Delta phase: smallest error between true signal and inferred phases until rate of change $\frac{\Delta p_s}{\Delta n} \approx 1$

Delta phase: smallest error between true signal and inferred phases for all SNRs tested

- Interactive testing with non-sinusoidal signals delta phase performs best, most consistently
- Delta phase has some **memory** to aid in tracking, especially in the presence of noise
- Next step: analyze and characterize **DPQ using delta phase to infer period**