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Abstract

We have developed a framework for analyzing images, calledShells and Spheres,
based on a set of spheres with adjustable radii, with exactly one sphere centered at
each image pixel. This set of spheres, known as asphere map, is considered optimized
when each sphere reaches, but does not cross, the nearest boundary. Calculations de-
noted asVariable-Scale Statistics(VSS) are performed on populations of pixels within
spheres, as well as populations of adjacent and overlapping spheres, in order to deduce
the proper radius of each sphere. Spheres grow or shrink by adding or deleting an outer
shell one pixel thick. Unlike conventional fixed-scale kernels, our spherical operators
consider as many pixels as possible to differentiate between objects and accurately de-
lineate boundaries. We use the word “sphere” here for brevity, though the approach is
not limited to 3D and is valid inn-dimensions. We illustrate our approach on synthetic
images containing objects with uniform intensity. We then describe a particular algo-
rithm using Shells and Spheres and demonstrate it by segmenting the aortic arch in a
contrast-enhanced CT scan, both in 2D and 3D.
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1 Introduction

The framework of Shells and Spheres described in this paper is based on a set of spheres
called asphere map. A sphere map consists of exactly one sphere centered at each
image pixel, whose radius can be adjusted. Calculations denoted asVariable-Scale
Statistics(VSS) are performed on populations of pixels within spheres, as well as pop-
ulations of adjacent and overlapping spheres. Memory and computational requirements
are kept reasonable by storing only a relatively small, fixed number of VSS at every
pixel, many of which can be updated incrementally when growing or shrinking spheres.
The ultimate goal of adjusting radii is to produce a sphere map in which each sphere is
as large as possible without crossing a boundary. The spheres’ radii are thus equivalent
to what is commonly known as adistance map[1]. Though the task is trivial in binary
images, where definitive boundaries are known, it presents a challenge when bound-
aries are difficult to determine due to noise and tissue inhomogeneity. Our approach
is well suited to this challenge, with the caveat that the correctness of segmentation of
real images is subjective.

Many conventional methods for image processing consider a region of fixed size
and shape, usually referred to as akernel, especially when used for convolution. Other
common approaches define dynamic regions adjoining boundaries using deformable
contours [2] or level sets [3]. Our approach, instead, uses a set of spheres whose in-
dividual radii are optimized using VSS operators to achieve maximum discrimination
between image regions. Not only do such spheres provide highly representative popu-
lations for boundary detection, but those spheres that touch at least two boundaries are
alsomedial, as classically defined by Blum [4], providing a basis for medial feature ex-
traction. Unlike Gaussian blurring, commonly used in multi-scale analysis [5], Shells
and Spheres preserves sharp boundaries with increasing scale.

This paper presents the notation and basic operators of Shells and Spheres for com-
puting VSS. Using this framework, a wide variety of algorithms for sphere map opti-
mization are possible, and we present one such algorithm here. We then extend this
algorithm to include methods to identify boundary and medial locations, followed by
an application of our algorithm to image segmentation.

2 Methodology

We begin by defining our notation. As previously stated, Shells and Spheres is in-
herentlyn-dimensional. For brevity, we use the termsphereinstead ofcircle or hy-
persphere, regardless of image dimension. Figures are presented in 2D for ease of
illustration.

2.1 Shells and Spheres

Since the framework of Shells and Spheres is used to gather statistics on dynamic
collections of pixels, we adopt a hybrid form of notation derived from standard set
theory and statistics. We denote vectors by lowercase bold-faced letters (x), scalars by
lowercase italic letters (r), and sets by uppercase letters (S). We useZ to denote the

1



set of all integers, andΩ ⊂ Zn to denote the set of all pixel locations in a sampled
n-dimensional image.

Given ann-dimensional image with intensitiesf(x) for x ∈ Ω, we define asphere
map, which assigns the radiusr(x) to the sphere centered at each pixelx.

We define a sphere to be ann-dimensional neighborhood of pixels that lie within a
radiusr of a center point. We use an integer value forr, such that a sphere of radiusr
centered at a pixelx is given by

Sr(x) = {y : round(|y − x|) ≤ r, y ∈ Ω} . (1)

Note the shorthand notation for the subscriptr, meaningr(x), the radius of the particu-
lar sphere atx as given by the sphere map. In some instances, the reader will encounter
an example with a different subscript, such asS1(x), meaning a sphere of radius 1,
irrespective ofr(x). By definition,x ∈ Sr(x) for all x, even whenr(x) = 0, and
henceSr(x) is always non-empty.

A shell is a set of all pixels whose distance to the center rounds to a given radius,
defined for radiusr as

Hr(x) = {y : round(|y − x|) = r, y ∈ Ω} . (2)

Shells are non-overlapping such that for concentric shells,

Hp(x) ∩Hq(x) = ∅, p 6= q . (3)

Additionally, shells are space-filling, and thus a sphere of radiusr may be formed from
a union of shells,

Sr(x) =
r⋃

k=0

Hk(x) . (4)

Figure 1 illustrates the distribution of pixels in a series of concentric shells sur-
rounding a central pixel in a 2D image. Each pixel is labeled with its offset from the
central pixel (labeled “x”). Fig. 2 shows an image containing two noiseless objects
with pixel intensities of 1 and 9 respectively. Note that pixels in this case are repre-
sented by their intensity. The boundary between the objects is identified by a straight
dashed line. Pixelx is surrounded by a concentric set of four shellsH0(x), H1(x),
H2(x), andH3(x), shown separated by dashed circles. ShellH3(x) is truncated by
the edge of the image. The union of all four shells isSr(x), shown enclosed by a solid
circle, with a radius governed by the value ofr(x) = 3 in the sphere map. Similarly,
on the other side of the boundary, pixely with a value of 9 has three shells whose
unionSr(y) has a radiusr(y) = 2. BothSr(x) andSr(y) touch but do not cross the
boundary, and are therefore correctly optimized.

The correctly optimized sphere map of the image in Fig. 2 is shown in Fig. 3, with
each pixel represented by the radius of the sphere centered at that pixel. Note the linear
increase in sphere radius with distance from the boundary and the fact that the radius
equals zero adjacent to the boundary.
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Figure 1: Each pixel is shown as a number indicating its integer distance from the
central pixel. If we denote the central pixel asx, then pixels labeledn are members of
the setHn(x). For example, the pixels labeled “3” (shown in bold) comprise the set
H3(x).

Figure 2: Noiseless image with boundary between two objects. Correctly scaled
spheresSr(x) with r(x) = 3 andSr(y) with r(y) = 2 touch, but do not cross, the
boundary. Numbers indicate pixel intensity.

2.2 Variable Scale Statistics

We derive a number of statistics at each pixelx, calculated on the intensities of pix-
els within spheres. Since these statistics depend on the radii of the spheres, we call
them Variable Scale Statistics (VSS). We denote asprimary statisticsthose VSS atx
calculated using only the population of pixels withinSr(x). Higher-ordersecondary
statisticsare VSS derived from multiple spheres.

2.2.1 Primary Statistics

The primary statistics at pixelx concern only the population of pixels within the sphere
Sr(x). Thus themeanat pixelx is the mean intensity of all pixels within the population
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Figure 3: Correctly optimized sphere map of the image in Fig. 2. Numbers indicate
the integer radius of the sphere at each pixel. Pixelsx andy are labeled as before.

Sr(x), defined as

µ(x) =
1

|Sr(x)|
∑

y∈Sr(x)

f(y) , (5)

where|Sr(x)| is the number of pixels inSr(x) andf(y) is the image intensity aty.
Thevarianceat pixelx is defined as

σ2(x) =
1

|Sr(x)| − 1

∑
y∈Sr(x)

[f(y)− µ(x)]2 . (6)

where |Sr(x)| > 1. The standard deviationσ(x) is simply the square root of the
variance.

Thefirst-order momentof intensities withinSr(x) is given by

m(x) =
∑

y∈Sr(x)

(y − x)f(y) . (7)

Due to the finite extent of an image’s domainΩ, a sphere may be truncated by one
or more edges of the image (for example,S3(x) in Fig. 2). Unlike conventional ker-
nels, which usually require pixel values to be arbitrarily defined outside the image, our
spherical sets simply exclude such locations from all calculations. Thus, truncation
will not adversely affectµ(x) or σ(x). However, the first-order moment will suffer a
bias due to asymmetrical pixel distribution within the truncated sphere. We compensate
for this in defining a measure that shows no edge effect, which we callVSS gradient.
Given the center of mass of pixel locations in sphereSr(x),

c(x) =
1

|Sr(x)|
∑

y∈Sr(x)

y , (8)

the VSS gradient atx is

∇f(x) =
1

|Sr(x)|
[m(x)− µ(x)(c(x)− x)] . (9)
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Figure 4: TheS−1(x) set of spheres that contain pixelx, adjacent to the boundary
between two noiseless objects with respective intensities of 1 and 9.

The VSS gradient does not suffer from the usual edge effects of convolution kernels
(see Fig. 6C). Note that for non-truncated spheresc(x) = x and VSS gradient is
equivalent to the moment vector normalized to the number of pixels,m(x) / |Sr(x)|.

All of the above statistics can be computed incrementally as shells are added to, or
removed from, a given sphere, significantly reducing computational load during sphere
map optimization.

2.2.2 Secondary Statistics

We define secondary statistics as higher order VSS derived by combining multiple
spheres to form more complex neighborhoods. One such neighborhood,S−1(x), is
defined as

S−1(x) = {y : x ∈ Sr(y)} , (10)

the set of all pixels whose spheres containx. The−1 supercsript is used to impart the
flavor of an inverse function. Note that since it is always true thatx ∈ Sr(x) it must
likewise always be true thatx ∈ S−1(x).

Given an optimized sphere map,S−1(x) will consist entirely of pixels within the
same object as pixelx. Fig. 4 shows members of one suchS−1(x) set, consisting of
three pixels (bold), whose spheres containx. Notice that all three spheres touch but do
not cross the boundary, so this particularS−1(x) set is correctly optimized.

Secondary statistics are derived from populations of spheres such asS−1(x). Thus,
themean of meansis defined as

µµ(x) =
1

|S−1(x)|
∑

y∈S−1(x)

µ(y) , (11)

or the mean of the mean intensities for all the spheres inS−1(x). In a noiseless image
containing distinct homogeneous regions, theµµ(x) yielded by a correct sphere map
will be identical to the original image.

Likewise, thestandard deviation of the meansis defined as
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Figure 5: Image with noise. Pixelx is deterred from extending its sphere across the
boundary because its mean is an outlier in the populationS−1(y).

σµ(x) =

 1
|S−1(x)| − 1

∑
y∈S−1(x)

[µ(y)− µµ(x)]2

 1
2

. (12)

Note that the above definition ofσµ(x) is given only for|S−1(x)| > 1. For noiseless
images, a correct sphere map will yieldσµ(x) values of 0 for all pixels.

We compute az-valueto provide a measure of how wellSr(x) fits into the current
S−1(y) set,

zµ(x|y) =
|µ(x)− µµ(y)|

σµ(y)
. (13)

The justification is that, in an optimized sphere map, ifSr(x) were to contain pixely,
thenµ(x) should fall well within the distribution of means for all spheres that already
containy. This concept is illustrated in Fig. 5, which shows pixelx attempting to
extend its sphere across the boundary to include pixely. We have included noise in
the image to demonstrate that a highz-value could be used to stop the growth ofSr(x)
at the boundary, even in the presence of noise. It should be noted that the utility of
this statistic is dependent on a reasonable initialization of the sphere map, such that the
percentage of spheres not crossing boundaries is high enough to lend statistical validity
to µµ(y) andσµ(y).

2.3 Demonstration on a Noiseless Image

We demonstrate the optimization of a sphere map using our system on a noiseless syn-
thetic image containing a number of homogeneous objects as shown in Fig. 6A. Opti-
mization on such an image is trivial; spheres are initialized to zero radius and allowed
to grow until adding the next shell would yield a non-zero varianceσ2(x). Figure 6B
shows results of optimizing the sphere map on the synthetic image in Fig. 6A. Figure
6B shows negative ridges (dark) along boundaries, and positive ridges (bright) along
medial manifolds. Figures 6C and 6D show, respectively, they component of the VSS
gradient and the variance calculated using spheres of radius 5 at all pixels in the image.
Note that neither the gradient nor the variance suffer from edge effects. Note also that
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Figs. 6C and 6D use a non-optimized sphere map, which includes spheres that cross
boundaries.

Figure 6: A: A noiseless synthetic image. B: The optimal radius image. C: The VSS
gradient in they direction, calculated using spheres of radius 5 pixels at all image
points. D: The variance image, also calculated with all spheres set to a radius of 5.

3 Algorithm For Segmenting Real Images

The Shells and Spheres framework presented thus far provides basic tools that can be
used in many ways. We have explored a number of these, and in the remainder of
this paper we will present one effective algorithm for optimization of the sphere map,
followed by segmentation of the aortic arch in a contrast-enhanced CT scan.

The algorithm presented here consists of six steps. Steps 1-4 optimize the sphere
map. Step 5 identifies medial pixels, i.e. those whose spheres touch at least two bound-
aries. Given a medial seed point, step 6 connects neighboring medial pixels and com-
bines their corresponding spheres to produce a segmentation. The following sections
describe each step in more detail.

3.1 Step 1: VSS Gradient-Based Radius Initialization

For the noiseless synthetic image shown earlier (Fig. 6), it was trivial to optimize the
sphere map by growing the spheres until any non-zero variance was detected. When
analyzing real images, however, this approach will fail, because intensity variation due
to noise may be indistinguishable from an object boundary, especially within small
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spheres. To yield viable statistical populations, at least some spheres must be correctly
initialized. To accomplish this, we first set all spheres tor(x) = 0 and then allow
spheres to grow until a persistent increase in VSS gradient magnitude is detected over
a series of scales. Unlike conventional gradient measured with a fixed-scale kernel,
the VSS gradient depends locally onr(x), and is based on the first-order moment of
intensity normalized by the number of pixels in the sphere. Thus we can expect VSS
gradient to increase monotonically as a sphere grows past a boundary, since the first
order moment favors the outer pixels. We look for a persistent increase in VSS gradient
for g consecutive steps, at which pointr(x) is reset to the scale just before the increase
began. Empirically, we have found that a value ofg = 5 works well in our particular
application to achieve a reasonable first approximation of the optimized sphere map.

Step 1 is effective at growing spheres past tissue inhomogeneity and noise. How-
ever, spheres may not stop exactly at the boundary, because of the inherent effect of
noise on the detection of gradient increase. Using the gradient to govern sphere growth
can also fail completely for a sphere that encounters two opposing boundaries simulta-
neously, as their contributions to the gradient may cancel.

3.2 Step 2: Variance-Constrained Radius Reduction

After Step 1, three possible states exist for each sphere: The sphere can be too large,
too small, or the correct size (i.e. it touches the nearest boundary but does not cross
it). Empirically, the most glaring error in the sphere map after Step 1 is the pres-
ence of large-scale spheres that have incorrectly grown past boundaries. As mentioned
above, this typically occurs when a growing sphere contacts multiple boundaries at
once, which is to say, when the sphere lies on the medial manifold. In such a case, the
contributions to the gradient from multiple boundaries may cancel, allowing the sphere
to grow past its correct scale. Such spheres will, however, have a larger varianceσ2(x)
than spheres that correctly remain within the object boundaries.

To address this case, we shrink all spheres with a variance above a certain threshold
α, decrementingr(x) for each sphereSr(x) until σ2(x) < α. The thresholdα is set
relative toµσ2 andσσ2 , the mean and standard deviation, respectively, of the variance
of all the spheres in the current sphere map, as defined by

α = µσ2 + βσσ2 . (14)

The positive constantβ represents the number of standard deviations above the mean
permitted for a sphere’s variance without the sphere being required to shrink. We
have found that this parameter is not particularly sensitive, as the difference between
spheres with erroneously high variance and all others is approximately two orders of
magnitude. For the results presented, we used a value ofβ = 0.2.

It should be noted that the threshold depends on the currentr(x), which is not
yet fully optimized. We address this by returning to variance in Step 4, once a more
accurater(x) is available.
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Figure 7: Illustration ofK−1(x) containing 7 pixels (bold), each of whose sphere
would place its reflector across the boundary atx.

3.3 Step 3: Outpost Selection and Exclusion

A primary use of VSS is to differentiate regions on opposite sides of the boundary. To
do this, however, most spheres must already not be crossing boundaries, as spheres that
do cross boundaries will corrupt the statistics. Following Step 2, we find that enough
spheres are approximately the right size that many face each other across boundaries,
producing high values forzµ(x|y). We can identify a likely boundary candidate for
a given sphere by finding a pixel in itsHr+1(x) shell with a high value forzµ(x|y).
The sphere atx is said to place areflectorat such a location, denoting a vote by the
sphere for the pixely across the nearest boundary. Thus, referring to Fig. 5,Sr(x)
could place a reflector at pixely. The set of reflectors placed by a given sphereSr(x)
is denotedK(x). In the present algorithm we limit|K(x)| = 1, that is, each sphere
places only one reflector for reasons discussed below. This limit enables us to define

K(x) = {y : y = argmax
y∈Hr+1(x)

zµ(x|y)}. (15)

Each pixel may contain reflectors placed by a number of spheres, and we define the
set of spheres that have placed reflectors atx as

K−1(x) = {y : x ∈ K(y)} (16)

using the inverse notation as we did forS−1(x) in Eq. 10.
We refer to|K−1(x)| as thereflector count, i.e. the number of reflectors that have

been placed at locationx. For example, in Figure 7, the reflector count|K−1(x)| = 7.
The reflector placed byy at x has an inherent direction governed by the vector

(y − x). We denote the vector sum of the directions of all of the reflectors atx as the
reflectancek(x), defined as

k(x) =
1

|K−1(x)|
∑

y∈K−1(x)

y − x
|y − x|

. (17)

Since we have decided that each sphere will contribute exactly one reflector, re-
flector density and reflectance are normalized over the image. We can therefore use
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reflector count to differentiate between significant collections of reflectors at bound-
aries and sparse distributions of reflectors in the interior of objects. To denote pixels
containing a significant number of reflectors, we adopt the termoutpost, since such
pixels serve as border markers, and in fact, face each other across boundaries much the
same way that military outposts of opposing armies face each other across the battle
line.

The set of all pixels in an image chosen to be outposts is denoted byP , and in the
present algorithm we find this set in two steps. First, we find the set ofprimary outposts
P ′, which contains all pixels with zero radius and at leastκ reflectors,

P ′ = {x : |K−1(x)| ≥ κ, r(x) = 0}. (18)

For the results presented in this paper,κ = 4. To increase the density of outposts along
the boundaries, we find a set ofsecondary outpostsP ′′ containing all pixels with zero
radius that adjoin an outpost inP ′ and have at leastλ reflectors, whereλ < κ,

P ′′ = {x : |K−1(x)| ≥ λ, H1(x) ∩ P ′ 6= ∅, r(x) = 0}. (19)

For the results presented,λ = 2. Combining the sets of primary and secondary out-
posts, we sayP is the set of all outposts,

P = P ′ ∪ P ′′. (20)

Each outposty ∈ P has a non-zero reflectancek(y). A sphere atx can distinguish
whether a given outpost is on its side of the boundary, constituting afriendly outpost,
or the other side of the boundary, being anenemy outpost, based on the direction of
the outpost’s reflectance. The set of enemy outposts (those with reflectance facingx)
within the sphere of radiusr(x), is defined as

Er(x) = {y : y ∈ P ∩ Sr(x),k(y) · (y − x) < 0}, (21)

where the sign of the dot product determines the direction ofk(y) relative tox, differ-
entiating friendly from enemy outposts.

In governing the growth of a sphere, enemy outposts are to be avoided, while
friendly outposts can be included. Step 3 uses the number of enemy outposts to ad-
just the sphere size as follows: If the pixel contains no enemy outposts inSr+1(x), the
sphere grows until it does. That is

If |Er+1(x)| = 0, increaser(x) until |Er+1(x)| > 0.

If the number of enemy outposts inSr(x) is greater thanγ, the radius is decreased until
this is no longer true, i.e.

If |Er(x)| > γ, reducer(x) until |Er(x)| ≤ γ.

In the present implementation,γ = 2. This factor prevents lone pixels that have been
improperly labeled as outposts from incorrectly causing spheres to shrink.

The effect of Step 3 is that significant densities of reflectors along boundaries cor-
rectly govern the size of spheres, sweeping incorrect reflectors from the centers of
objects to the boundaries. Because most spheres are large relative to the spacing of
outposts along the boundary, their growth will be stopped and they will not “leak” or
“bleed” across boundaries.
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Figure 8: Diagram on left of an object with intensity 1 between two regions of inten-
sity 9, showing setS−1(b) of pixels (bold) whose spheres contain pixelb. This set
produces ans(b) vector along which the furthest bold pixelm is the center of a medial
sphere (circle in bold) touching both boundaries (dashed lines). Image on the right of
a 2D slice through a CT scan of the aorta with contrast shows an actualS−1(b) set
(purple/grey), the resultings(b) vector, and the medial manifold on which the furthest
sphere alongs(b) must lie.

3.4 Step 4: Variance-Constrained Radius Growth

Although Step 3 results in a reasonably accurate sphere map, some spheres may still not
reach boundaries, because of pixels incorrectly labeled as outposts. We have found it
useful to grow spheres, using variance again to detect the boundary as in Step 2. Global
variance measuresµσ2 andσσ2 are recalculated, and subsequentlyα is recalculated
using the same value forβ as in Step 2. Due to further optimization of the sphere map,
α represents a more suitable variance threshold. We incrementr(x) for all spheres
while σ2(x) < α. The effect is to make the spheres more precisely match the objects
in the image.

At this point we consider the sphere map to be optimized.

3.5 Step 5: Medial Pixel Identification

Given that we have established an optimized sphere map, we aim to extract medial
pixels. To do this, we first define a dense set of boundary pixelsB from the sphere map
as those with radius 0 or 1,

B = {x : r(x) ≤ 1}. (22)

We useS−1(b) for b ∈ B to find pixels on the medial manifold, whose spheres are
as big as possible while still lying completely within the object. Figure 8(left) shows
such a medial pixel (labeled “m”) on the medial manifold of an object of intensity 1,
between two regions of intensity 9.

To find such medial pixels withinS−1(b), we first define an orientations(b) or-
thogonal to the boundary as the vector sum of the normalized offsets relative tob for
pixels withinS−1(b) as

s(b) =
1

|S−1(b)|
∑

y∈S−1(b)

y − b
|y − b|

. (23)
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For each boundary pixelb ∈ B, we identify the pixelm ∈ S−1(b) furthest from
the boundary alongs(b) as a medial pixel, as depicted in Fig. 8(left). The set of all
medial pixelsM is thus

M = {m : m = argmax
y∈S−1(b)

((y − b) · s(b)),b ∈ B}. (24)

Figure 8(right) shows an actualS−1(b) set for a pixelb on the boundary of the
aorta in a CT scan with contrast.

Selecting a single medial pixel from eachS−1(b) potentially overlooks a large
number of additional medial pixels on the outer edge of each set. However, we find
the setM derived in this manner to be a sparse but reliable set of pixels on the various
medial manifolds within the image.

3.6 Step 6: Medial Flood-Fill Segmentation

To segment a particular object, we select a medial seed pixelp ∈ M on that ob-
ject’s medial manifold and use a flood fill operator to find a connected subsetC ⊆ M
containing medial pixels that are connected top. Pixels belonging inC are found it-
eratively using a series of setsCi starting withC0 containing just the seed pixelp. At
each subsequent stepi + 1, the setCi+1 is created by adding medial pixels within a
radiusφ of pixels already in setCi. More precisely,Ci is defined inductively as

C0 = {p} (25)

Ci+1 = {x : x ∈ M,Sφ(x) ∩ Ci 6= ∅}. (26)

For the results presented, scaleφ was dynamically set toφ(x) = r(x)/2, as this
causes the algorithm to search half-way from the medial manifold to the boundary for
new medial pixels to include, therefore staying within the designated object. When a
final stepf adds no new pixels, such that

Cf = Cf−1, (27)

the flood-fill is complete and we say that the set of connected medial pixels within the
object is

C = Cf . (28)

The set of spheres centered at these medial pixels effectively segments the object.

3.7 Results

Tests were performed on a 3D contrast-enhanced CT scan containing the aortic arch.
Results can be seen in Fig. 9. Figure 9A shows a 2D sagittal slice through the raw 3D
data. Figure 9B is the optimized sphere mapr(x) of this 2D slice after step 4 showing
dark ridges along the boundaries and bright ridges along the medial manifolds. The
mean of meansimageµµ(x), obtained using spheres from the optimized sphere map,
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Figure 9: A: 2D CT image of the aortic arch. B: Optimizedr(x) image. C: Measured
mean of meansµµ(x) image given optimizedr(x). D: Segmentation of aortic arch
(pink/dark gray) and medial pixels within the image objects (blue/dark gray).

is shown in Fig. 9C. A reduction in noise within objects, without significant blurring
of boundaries, is evident. Fig. 9D shows the corresponding medial pixels in setM as
blue/dark spots and the segmentation from a seed pixel within the aorta as pink/dark
shading.

Figure 10 shows the results of the algorithm on the full 3D CT data set. The surface
model shown is simply the union of all spheres in the segmentation setC calculated
from a medial seed pixel within the aortic arch. The lighting on the surface model was
produced using OpenGL to render the spheres in setC.

Run time for the algorithm on 2D images (512x512) was typically 1-2 minutes
on a 2.4 GHz Pentium 4-M laptop with 1 gigabyte of RAM. Run time for 3D images
(155x90x75) was typically 3-4 hours using a single processor and 2 gigabytes of RAM
on a 2 GHz 64-bit quad-Opteron workstation.
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Figure 10: Surface model of the aortic arch produced by applying our algorithm to a
3D contrast-enhanced CT scan, using a single manually placed seed point.

4 Conclusions

Shells and Spheres provides ann-dimensional framework for computing Variable Scale
Statistics (VSS), using local pixel populations whose size and shape conform to objects
in a particular image. The populations are assembled from spheres whose radii vary
from pixel to pixel, providing the benefits of rotational invariance without sacrificing
the ability to analyze arbitrarily shaped regions. Separate regions span the entire extent
of objects on both sides of the boundary, rather than being limited to a small neighbor-
hood near the boundary.

Shells and Spheres differs from multi-scale approaches based on isotropic Gaussian
filters in that our domains are not weighted toward zero at their extremities, thus re-
maining “sharp” at large scale. Our approach is similar toanisotropic diffusion[?], in
that we seek to avoid blurring boundaries while considering large pixel populations.

The radius imager(x) is analogous to what is often called thedistance map, which
has been well explored for pre-segmented images [1]. We aim to converge on an op-
timal r(x) on unsegmented grayscale images. We determine a single optimal radius
for each pixel such that each sphere touches but does not cross the nearest boundary.
Troughs represent boundaries, wherer(x) is zero. Ridges represent the medial mani-
fold, wherer(x) is the medial scale.

We have presented Shells and Spheres and VSS operators, along with one algorithm
to optimizer(x) and segment the aortic arch in 2D and 3D from a single seed point.
We have shown that the framework is computationally tenable. Although we feel this
first algorithm requires too many parameters, the underlying framework offers many
possible avenues for further development.
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