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ABSTRACT

We have developed a novel framework for medical image analy-
sis, known asShells and Spheres. This framework utilizes spherical
operators of variable radius centered at each image pixel and sized
to reach, but not cross, the nearest object boundary. Statistical pop-
ulation tests are performed on adjacent spheres to compare image
regions across boundaries. Previously, our framework was applied
to segmentation of cardiac CT data with promising results. In this
paper, we present a more accurate and versatile system by optimiz-
ing algorithm parameters for a particular data set to maximize agree-
ment to manual segmentations. We perform parameter optimization
on a selected 2D slice from a 3D image data set, generating effec-
tive parameters for 3D segmentation in practical computational time.
Details of this approach are given, along with a validated application
to cardiac MR data.

1. INTRODUCTION

Medical images provide the means for clinicians to obtain a wide
variety of in-situ structural and functional data on which to base
diagnoses in a non-invasive manner, and as such provide an ex-
tremely powerful clinical tool. The ability to visualize shape, lo-
cation, deformation, and other structural information pertaining to
various anatomical structures is useful in surgical planning, diagno-
sis, and post-surgical evaluation, as well as many avenues of med-
ical research. However, interpreting imaging data can be difficult,
and delineating specific anatomical structures and quantifying par-
ticular geometric values usually requires highly trained radiologists
and technicians.

Segmentation is one of the most commonly desired procedures
in medical image analysis. The process of segmenting, or delin-
eating, a specific anatomical structure within an image is a complex
procedure, hampered by image noise, blurred boundaries, limitations
in data resolution, and ultimately by subjectivity in the very defini-
tion of objects within medical images. Processing 3D data, instead
of 2D slices, may introduce other problems such as anisotropy in res-
olution, when in-slice pixel resolution is greater than between-slice
spacing.

Manual segmentation is still the most common clinical practice
[2], though it is time-consuming (especially for 3D images) and re-
quires a great deal of anatomical knowledge and clinical expertise
on the part of the user. In addition to being slow and labor-intensive,
manual segmentation is prone to significant variation between users
due to the subjectivity of image interpretation.

We have developed a novel framework, calledShells and Spheres,
for automated medical image analysis and segmentation [1]. We

have obtained promising results using a segmentation algorithm based
on this framework, which employs variable-scaled spherical opera-
tors as representative populations of image objects. We will present
background on the basic concepts and statistics used by the Shells
and Spheres framework in the next section. In our previous research
[1], parameters were chosen manually and ad hoc to yield results
that were qualitatively pleasing. In this paper, we describe a more
rigorous parameter optimization procedure to maximize segmenta-
tion accuracy for a given data set. Results and validation data for
our parameter optimization technique and resulting automated 3D
segmentations of the right heart generated from MR data will be
presented.

2. BACKGROUND: SHELLS AND SPHERES

The framework of Shells and Spheres is based on a construct called
a sphere map. A sphere map is a set of spheres, exactly one sphere
centered at each image pixel, whose radii can be individually ad-
justed. Calculations denoted asVariable-Scale Statistics(VSS) are
performed on populations of pixels within spheres, as well as pop-
ulations of adjacent and overlapping spheres. Memory and compu-
tation requirements are kept reasonable by storing only a relatively
small, fixed number of VSS at each pixel, many of which can be
updated incrementally as spheres grow or shrink. The ultimate goal
of radii adjustment is to produce a sphere map in which each sphere
is as large as possible without crossing a boundary. Therefore, once
properly adjusted, the spheres’ radii are equivalent to what is com-
monly known as a distance map [3]. Though the task is trivial in
binary images, where definitive boundaries are known, it presents
a challenge when boundaries are difficult to determine due to noise
and tissue inhomogeneity. The Shells and Spheres approach is well
suited to this challenge, as it makes use of large pixel populations
defined by maximally sized spheres for its region-defining statistics,
though it is understood that the correctness of segmentation in real
images is ultimately subjective.

Many conventional methods for image processing consider a re-
gion of fixed size and shape, usually referred to as a kernel, espe-
cially when used for convolution. Other common approaches de-
fine dynamic regions adjoining boundaries using deformable con-
tours [4] or level sets [5]. Our approach, instead, uses a set of
spheres whose individual radii are optimized using VSS operators
to achieve maximum discrimination between image regions. Not
only can such spheres provide populations that are accurate and ver-
satile for boundary detection and region representation, but those
spheres that touch at least two boundaries are also medial, as clas-
sically defined by Blum [6], providing a basis for medial feature
extraction. And perhaps most importantly, unlike Gaussian blurring,
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commonly used in multi-scale analysis [7, 8], Shells and Spheres
preserves sharp boundaries with increasing scale.

2.1. Algorithm 1

The concepts of Shells and Spheres, VSS, and their potential applica-
tions to image analysis have been developed in detail in [1], with an
emphasis on segmentation. In that work, a particular algorithm uti-
lizing the framework was developed for segmenting the aortic arch
in contrast-enhanced CT data. We will refer to that algorithm here
as Algorithm 1, since a wide variety of diverse algorithms may be
created for segmentation, as well as for other image analysis tasks,
using Shells and Spheres. A brief overview of Algorithm 1 will now
be given to introduce the background concepts of the research pre-
sented in this paper.

The Shells and Spheres Algorithm 1 takes the form of a six step
process, with steps 1-4 optimizing the sphere map, step 5 finding
medial pixels, and step 6 producing an object segmentation.

Step 1creates an initial approximation of the sphere map, from
which acceptable statistical values can be obtained for use in subse-
quent steps. This approximation is based on determining probable
boundaries by detecting an increasing first-order moment of inten-
sity within each sphere as it grows. A persistent moment is assumed
to be a probable boundary, past which sphere growth is limited.

Step 2utilizes the pronounced discrepancy in variance between
spheres that have incorrectly grown across boundaries and those that
have not to shrink incorrect spheres, placing them correctly within
their appropriate image objects. The discrepancy is large enough
to permit the use of a global variance measure,βs, which will be
discussed further below.

Step 3 introduces specialized boundary indicators, known as
outposts, to the image based on boundary information between spheres
in adjacent objects. These outposts influence the radii of nearby
spheres, resizing them to adhere to the consensus of boundary in-
formation.

Step 4revisits variance using the updated sphere map, which is
more accurate and therefore capable of delivering a better estimate
of global variance. The new estimate, based on parameterβg, is
used to grow spheres fully within the object boundaries. This step
increases the accuracy of the sphere map with respect to the image.

Step 5 identifies medial pixels, i.e. those whose spheres touch
at least two boundaries.

Step 6, given a manually selected medial seed point, connects
neighboring medial pixels and combines their corresponding spheres
to produce a segmentation.

This algorithm has been enhanced in our current research to in-
clude a system for optimizing the parametersβs andβg based on
manually segmented data, as will be presented in the next section.
This has permitted the application of the algorithm to more chal-
lenging data, MR images of the right cardiac ventricle.

3. PARAMETER OPTIMIZATION

In our initial application of Algorithm 1 to cardiac segmentation, al-
gorithm parameters were manually derived for the particular data,
limiting the systems accuracy and versatility. For example, when the
parameters used to successfully segment the aortic arch in [1] were
applied to our RVOT data, the automated segmentation failed com-
pletely because the parameters are dependent on imaging modality
and target structure. To improve segmentation accuracy and adapt
our algorithm to new data sets, an optimization method was devel-
oped for two key algorithm parameters discussed above,βs andβg,

Fig. 1. Example Dice Similarity Coefficient (DSC) curve produced
by a 2D parameter optimization withβs ∈ 0.0 : 6.0, βg ∈ 0.0 : 1.9,
j = 0.1. The optimal DSC value 0.96, produced by the parameter
set (βs = 2.1, βg = 0.7), is indicated with an arrow.

which control variance thresholds regulating sphere shrinkage and
growth, respectively. Other parameters, believed to have signifi-
cantly less impact on the resulting segmentation, were left at the de-
fault values given in [1]. The parametersβs andβg were optimized
to maximize the resulting agreement, defined by the Dice Similarity
Coefficient (DSC) [9], between the automated segmentation and a
gold standard manual segmentation. The DSC, briefly, is the ratio
of twice the number of intersecting pixels between the two objects
and the combined number of pixels within both objects. This coef-
ficient is bounded by 0 and 1, with a value of 0 resulting from no
intersection and 1 resulting from complete overlap. This value will
be represented as

D = DSC(βs, βg) (1)

for given values ofβs andβg.
A brute-force optimization approach, testing every combination

of parameter values within given ranges at a given incrementj, was
applied to deduce the optimal parameter values for a given data set.
The optimal parameter values are defined by the maximal DSC, as

Dmax = argmax
βs∈βsi:βsf ,βg∈βgi:βgf

(DSC(βs, βg)). (2)

The value ofβs was discretely sampled at intervals ofj over a
rangeβsi : βsf , whereβsi indicatesinitial βs andβsf indicatesfinal
βs. Similarly, βs was over a range ofβgi : βgf . This brute-force
data gathering approach produces a DSC curve as seen in Figure 1.
The maximal DSC value of 0.96 on the upper ridge of the curve,
as indicated by an arrow, corresponds, in this case, to the parameter
valuesβs = 2.1 andβg = 0.7.

Though effective at producing parameters that resulted in accu-
rate segmentations, this optimization technique was computationally
time-consuming. For example, the 2D image used to produce the op-
timization in Figure 1 was a 256x256 pixel MRI image. A segmen-
tation of this single 2D image via our Shells and Spheres algorithm



Fig. 2. DSC curve produced by a 2D parameter optimization with
βs ∈ 1.0 : 3.5, βg ∈ −0.5 : 1.0, i = 0.1. The optimal DSC, 0.97,
is indicated with an arrow at valuesβs = 1.9, βg = −0.2)

took approximately 1 minute. The curve shown in Figure 1 repre-
sents 61 values ofβs and 20 values ofβg, with each combination
of parameter values producing a different segmentation. Thus, it re-
quired 1,220 analyses to create, or 20.3 hours of computation. While
search-based optimization techniques are being explored to replace
the brute-force approach, the fact that a single segmentation of a 3D
data set can take hours on its own indicates that even search-based
optimization would be computationally untenable in 3D data.

To allow for effective parameter optimization of 3D data, a method
of utilizing 2D slices for 3D parameter optimization has been devel-
oped. Optimization of parameters for automated 3D analysis and
segmentation can be achieved by optimizing the parameters on a 2D
slice from the target data set, rather than the full 3D data set, and
then applying the optimal parameters thus determined to 3D analy-
sis of the full data set. This technique not only makes the optimiza-
tion computationally tenable, but also reduces human requirements
by only requiring a manual segmentation of a single 2D slice, rather
than a full 3D segmentation. We will present results and validation
of 3D segmentations utilizing this parameter optimization technique
in the next section.

4. RESULTS AND VALIDATION

To determine the effectiveness of our parameter optimization tech-
nique on 3D analysis and segmentation, a 3D segmentation of the
right heart was performed on an MR scan of an ovine subject, seen
on the left side of Figure 5. Images were obtained in vivo, with a
1.5T Philips Intera Achieva MR scanner using white blood imaging
(T2 with SPIR, respiratory navigator gating) with the following pa-
rameters: FOV 350; TR 3.5; TE 1.8; flip angle 55;RFOV 70%; NSA
1; TFE factor 14; slice thickness 1.4/0.7; matrix 224/256 x 224.

A manually selected 2D slice, shown in Figure 3, was extracted
from the 3D data set, manually segmented, and used to perform a pa-
rameter optimization, producing the DSC curve shown in Figure 2.
It should be noted that this is a different curve than that shown in Fig-
ure 1. The data in Figure 2 was derived from the ovine cardiac MR

(a) (b)

Fig. 3. (a) 2D slice of MR cardiac data and (b) manual segmentation
(red or dark) used for parameter optimization in the 3D segmentation
study.

Fig. 4. Surface model of the automated segmentation of the right
heart with the RV and RVOT labeled, shown from three different
perspectives.

image shown in Figure 5. This slice, and the selected object within it
(the aortic arch), were chosen because the thin boundaries between
adjoining larger objects simulated conditions for the 3D segmenta-
tion of the right ventricle adjoining other cardiac structures.

The optimization yielded values ofβs = 1.9 andβg = −0.2 for
this data set, which produced a DSC of 0.97. This set of parameters,
determined on a 2D slice, enabled our Shells and Spheres algorithm
to produce a 3D segmentation of the right heart, shown anatomically
labeled in multiple orientations in Figure 4 and overlaid on the MR
data in Figure 5.

To test the accuracy of the 3D segmentation, a validation study
was conducted to compare it to three manual segmentations. Each
segmentation was produced by a different user. Table 1 shows the
DSC values for our automated segmentation compared to the manual
segmentations, as well as the DSC values for the manual segmenta-
tions compared to each other. It can be seen that our automated seg-
mentation matched the manual segmentations with a DSC between
0.83 and 0.86. It should be noted that a DSC of 0.70 is considered
excellent agreement in the literature [10], although the definition of
sufficient accuracy is, of course, specific to the application. While
the manual segmentations produced slightly higher agreement with
each other than with the automated segmentation, it is believed that a
significant portion of this discrepancy is due to the difficulty defining



Fig. 5. Left: The ovine cardiac MR data set used in our segmenta-
tion study. Right: A surface model of the automated segmentation
produced by our Shells and Spheres algorithm overlaid on the MR
data.

Table 1. Table of DSC values comparing segmentations produced by
3 independent subjects and our Shells and Spheres (S&S) algorithm.

Subject 1 Subject 2 Subject 3

S&S 0.83 0.84 0.86

Subject 1 * 0.91 0.88

Subject 2 * * 0.89

the extent of the “right heart” along the continuum of the circulatory
system. Subject 3 elected to include less of the branching vascu-
lature connected to the main cardiac structures, which led to greater
agreement with the automated segmentation and less agreement with
the other manual segmentations. Despite the variation in manual
segmentations, our system still demonstrated reliable segmentation
results.

5. CONCLUSIONS

This study validated the effectiveness of Shells and Spheres Algo-
rithm 1 for segmentation of the right heart in cardiac MR data. The
right heart provides additional challenges for segmentation absent
in our previous work with the aorta, in particular, the presence of
several large, adjacent structures of similar intensity. The study con-
firmed our expectation that algorithm parameters could be optimized
for automated 3D segmentation based on a 2D manual segmentation
of a slice from the same data set. Pilot optimization on a 2D slice
to obtain parameters for 3D analysis could be a very practical means
of finding optimal parameters for a particular imaging modality and
anatomical target, or even a particular clinical 3D scan. This finding
increases the power and versatility of our analysis and segmenta-
tion framework by providing an effective method for tailoring the
algorithm parameters to maximize the accuracy of segmentation and
provides evidence for the validity of the Shell and Spheres frame-
work.
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