# Kodak Display AM550L Active Matrix OLED Panel Data Sheet

#### **Overview:**

The Kodak Display AM550L is a 5.48-cm (2.16-inch) diagonal, full-color active matrix organic light emitting diode (OLED) display. Optimal applications include digital video cameras and digital cameras, portable entertainment (games, DVD/video players, TV,) and other products in the consumer electronics, industrial, medical, and automotive industries.

#### **Features and Benefits:**

**High brightness and contrast, full color, crisp motion, and extremely wide viewing angle** deliver sharper brighter images.

Thin, lightweight screens; no backlight required.

Low power consumption, achieved by eliminating the power for backlight and by taking advantage of the normal (off) state of the pixels.

Simple, rugged, and easy to integrate.

- o 113,578 (521x218) light emitting dots
- o Delta color arrangement
- o Up/down and right/left inverse function
- o Narrow frame
- o Anti-reflection (AR) coated polarizer
- o High response time
- o Full-color(16.7 million colors/24 bit) with Kodak's Controller device (KDP01100)

\* Any and all information contained herein is subject to change without notice due to product/technology improvement. A mutually agreed on "Delivery Specification" will be developed and referred to.



<sup>\*</sup> Information (including circuit diagrams and circuit parameters) herein is only intended to provide examples and is not intended to guarantee any designs for mass production. This specification is believed to contain accurate and reliable information, however, no guarantees are made or implied that its use is free from any infringement of intellectual property rights or other rights of third parties. \* In the event that any or all products (including technical data, services) described or contained herein are subject to any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities in accordance with such laws and regulations.

<sup>\*</sup> Products contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems.

ALE251SK1.11 DS

### **1.Mechanical Specifications**

| Parameter                                       | Specification         | Unit |
|-------------------------------------------------|-----------------------|------|
| Number of light emitting dots (H) x (V)=(Total) | 521 x 218 = 113,578   | dot  |
| Effective viewing area (W) x (H)                | 43.81 x 32.92         | mm   |
| Display size (diagonal)                         | 5.48 (2.16-inch type) | cm   |
| Dot pitch (H) x (V)                             | 0.084 x 0.151         | mm   |
| Color arrangement                               | RGB delta             | -    |
| Dimensions (W) x (H) x (D) *1                   | 52.0 x 45.4 x 1.72    | mm   |
| Weight                                          | 8.0                   | g    |
| FPC projection length                           | 33.0                  | mm   |

\*1 The protrusions (FPC) are not included.

### 2.Block Diagram

Block diagram of the OLED display is shown below.



(Front view)



### ALE251SK1.11 DS

# Preliminary rvs110402 rev 1.11-2

#### 3. Dot Arrangement

(Front view)



D1, D2, and D3 are dummy shift resisters.

#### 7.Absolute Maximum Ratings (HVSS, VVSS=0V, Ta=25°C)

| Parameter                                    | Symbol                                | Rating       | Unit | Remarks |
|----------------------------------------------|---------------------------------------|--------------|------|---------|
| H driver power supply voltage                | HVDD                                  | -1.0 ~ +10.0 | V    |         |
| V driver power supply voltage                | VVDD                                  | -1.0 ~ +10.0 | V    |         |
| V driver power supply voltage (negative)     | VBB                                   | -6.0 ~ -1.0  | V    |         |
| Input voltage for storage capacitance        | SC                                    | HVDD+0.5     | V    |         |
| Power supply voltage for OLED 1              | PVDD                                  | 0 ~+10.0     | V    | *2      |
| Power supply voltage for OLED 2              | CV                                    | -10.0 ~ 0    | V    | *2      |
| H driver input voltage                       | STH,XSTH,CKH1,<br>CKH2,CSH            | -1.0 ~ +10.0 | V    |         |
| V driver input voltage                       | STV,XSTV,CKV1,<br>CKV2,ENB, XENB, ČSV | -1.0 ~ +10.0 | V    |         |
| Video signal input voltage                   | R,G,B                                 | -1.0 ~ +8.0  | V    |         |
| Operating temperature (on the panel surface) | Topr                                  | -10 ~ +75    | C    | *3      |
| Storage temperature                          | Tstg                                  | -30 ~ +75    | C    | *3      |

\*2 However, potential difference (PVDD-CV) shall be within 16V.

\*3 Maximum wet bulb temperature is 39°C or below; no condensing.



ALE251SK1.11 DS

#### 4.Operating Conditions

(1) Power Supply and Input Signal Voltage (VVSS=HVSS=0V,SC=PVDD,Ta=25C)

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Symbol   | MIN       | TYP  | MAX       | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------|------|-----------|------|
| Demonstration of the second se |      | HVDD     | 8.2       | 8.5  | 8.8       |      |
| Power suppry voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | VVDD     | 8.2       | 8.5  | 8.8       | ] `  |
| VBB output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | VBB      | -         | -4.0 | -         | V    |
| II driver in rut velte ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low  | VHIL     | -0.3      | 0    | 0.3       | N    |
| H driver input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High | VHIH     | 2.5       | 3.0  | 4.0       |      |
| V driver in rut velte co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Low  | VVIL     | -0.3      | 0    | 0.3       |      |
| v driver input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High | VVIH     | 2.5       | 3.0  | 4.0       |      |
| CSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low  | VCSHL    | HVSS      |      |           |      |
| CSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High | VCSHH    |           |      | HVDD      |      |
| CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low  | VCSVL    | VVSS      |      |           |      |
| CSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High | VCSVH    |           |      | VVDD      |      |
| Video signal input valtage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Vsig max | PVDD -2.8 | -    | PVDD -0.7 |      |
| Video signal input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Vsig p-p | 1.0       | -    | 3.4       |      |
| Power supply voltage for OLED 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | PVDD     | 6.7       | 7.0  | 7.3       | V    |
| Power supply voltage for OLED 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | CV       | -7.3      | -7.0 | -6.7      | V    |

Power Supply Voltage Generation Circuit (Negative Voltage)

Connect the smoothing capacitor and zener diode to VBB output pin for stabilization of voltage as shown below. Please select the zener diode so that the VBB voltage is set to -4.0V.





ALE251SK1.11 DS

#### **5. Pin Function**

| No. | Name | Description                                                 |
|-----|------|-------------------------------------------------------------|
| 1   | N.C. | (Leave this pin open)                                       |
| 2   | CKV1 | V clock 1                                                   |
| 3   | CKV2 | V clock 2                                                   |
| 4   | STV  | V SR start signal                                           |
| 5   | XSTV | Inverted signal of STV                                      |
| 6   | VVDD | VDD for V drive                                             |
| 7   | XENB | Inverted signal of ENB                                      |
| 8   | ENB  | Enable signal                                               |
| 9   | VVSS | VSS for V drive                                             |
| 10  | CSV  | Up/down inverse control signal                              |
| 11  | VBB  | VBB output pin                                              |
| 12  | CV   | Power supply voltage for OLED 2 (cathode)                   |
| 13  | CV   | Power supply voltage for OLED 2 (cathode)                   |
| 14  | CV   | Power supply voltage for OLED 2 (cathode)                   |
| 15  | CV   | Power supply voltage for OLED 2 (cathode)                   |
| 16  | PVDD | Power supply voltage for OLED 1 (anode)                     |
| 17  | PVDD | Power supply voltage for OLED 1 (anode)                     |
| 18  | PVDD | Power supply voltage for OLED 1 (anode)                     |
| 19  | PVDD | Power supply voltage for OLED 1 (anode)                     |
| 20  | SC   | Input voltage for storage capacitance (connected with PVDD) |
| 21  | В    | Video signal (B)                                            |
| 22  | R    | Video signal (R)                                            |
| 23  | G    | Video signal (G)                                            |
| 24  | CSH  | Right/left inverse control signal                           |
| 25  | N.C. | (Leave this pin open)                                       |
| 26  | HVSS | VSS for H drive                                             |
| 27  | STH  | H SR start signal                                           |
| 28  | XSTH | Inverted signal of STH                                      |
| 29  | HVDD | VDD for H drive                                             |



30

31

32

CKH1

CKH2

N.C.

H clock 1 H clock 2

(Leave this pin open)

# Preliminary

rvs110402 rev 1.11-2

ALE251SK1.11 DS

#### 6. Equivalent Circuit

Every terminal, except for those in the power supply circuit, is provided with a protective diode against electrostatic charge.

The following is the equivalent circuit for each input terminal.

(1) R, G, B



#### (2) STV, XSTV, CKV1, CKV2, ENB, XENB (VVDD-VVSS) and STH, XSTH, CKH1, CKH2 (HVDD-HVSS)



\*4 STH, STV and ENB have one output port each.

#### (3)SC, CSH (HVDD-HVSS), CSV (VVDD-VVSS)



(4) HVDD, VVDD, HVSS, VVSS, VBB, PVDD, CV

Input o



© Eastman Kodak Company, 2002

**Preliminary** 

rvs110402 rev 1.11-2

ALE251SK1.11 DS

### 7. Timing

Clock Timing Conditions (Ta=25°C, HVDD=VVDD=8.5V)

|       | Parameter                    | Symbol | MIN  | TYP  | MAX  | Unit |
|-------|------------------------------|--------|------|------|------|------|
|       | STH rise time                | trSTH  | -    | -    | 30   | ns   |
|       | STH fall time                | tfSTH  | -    | -    | 30   | ns   |
|       | STH data setup time          | tdSTH  | 70   | 181  | 201  | ns   |
| STH   | STH data hold time           | thSTH  | 70   | 90   | 201  | ns   |
|       | STH fall→XSTH rise time      | to1STH | -15  | 0    | 15   | ns   |
|       | STH rise→XSTH fall time      | to2STH | -15  | 0    | 15   | ns   |
|       | ENB rise→STH fall time       | toSTH  | 900  | 1100 | 1300 | ns   |
|       | CKHn <sup>*5</sup> rise time | trCKHn | -    | -    | 100  | ns   |
| CVIL  | CKHn <sup>*5</sup> fall time | tfCKHn | -    | -    | 100  | ns   |
| CKHN  | CKH1 fall→CKH2 rise time     | to1CKH | -15  | 0    | 10   | ns   |
|       | CKH1 rise→CKH2 fall time     | to2CKH | -15  | 0    | 10   | ns   |
|       | STV rise time                | trSTV  | -    | -    | 60   | ns   |
|       | STV fall time                | tfSTV  | -    | -    | 60   | ns   |
| CTV   | STV data setup time          | tdSTV  | 4    | 6    | 10   | us   |
| 510   | STV data hold time           | thSTV  | 53   | 57   | 59   | us   |
|       | STV fall→XSTV rise time      | to1STV | -20  | 0    | 20   | ns   |
|       | STV rise→XSTV fall time      | to2STV | -20  | 0    | 20   | ns   |
|       | CKVn <sup>*5</sup> rise time | trCKVn | -    | -    | 60   | ns   |
| CVUn  | CKVn <sup>*5</sup> fall time | tfCKVn | -    | -    | 60   | ns   |
| CKVII | CKV1 fall→CKV2 rise time     | to1CKV | -20  | 0    | 20   | ns   |
|       | CKV1rise→CKV2 fall time      | to2CKV | -20  | 0    | 20   | ns   |
|       | ENB rise time                | trENB  | -    | -    | 60   | ns   |
|       | ENB fall time                | tfENB  | -    | -    | 60   | ns   |
|       | CKV rise/fall→ENB rise time  | tdENB  | 400  | 2200 | 5000 | ns   |
| ENB   | ENB pulse width              | twENB  | 7000 | 7300 | 7600 | ns   |
|       | ENB rise→XENB fall time      | to1ENB | -20  | 0    | 20   | ns   |
|       | ENB fall→XENB rise time      | to2ENB | -20  | 0    | 20   | ns   |

\*5 CKHn, CKVN indicate CKH1, CKH2, and CKV1, CKV2 respectively. (fCKHn=1.84MHz; fCKVn=7.87kHz)



ALE251SK1.11 DS

#### 8. Drive Waveforms

### (1)**H driver**

|     | Parameter                              | Symbol | Waveform                                             | Condition                                      |
|-----|----------------------------------------|--------|------------------------------------------------------|------------------------------------------------|
|     | STH rise time                          | trSTH  | STH 10%                                              | ○ CKHn <sup>*5</sup><br>Duty 50%               |
|     | STH fall time                          | tfSTH  | trSTH tfSTH                                          | to1CKH=0ns<br>to2CKH=0ns                       |
|     | STH data setup time                    | tdSTH  | *6<br>STH 50<br>%<br>CKH1 50<br>%                    |                                                |
|     | STH data hold time                     | thSTH  | CKH2tdSTHthSTH                                       |                                                |
| STH | STH fall $\rightarrow$ XSTH rise time  | to1STH | *6 50% 50% 50%                                       | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKH=0ns |
|     | STH rise → XSTH fall<br>time           | to2STH | XSTH<br>50%<br>50%<br>50%<br>50%<br>to2STH<br>to1STH | to2CKH=0ns<br>tdSTH=181ns<br>thSTH=90ns        |
|     | ENB rise → STH fall<br>time            | toSTH  | *6 toST $50\%$ H $50\%$ ENB $50\%$                   |                                                |
|     | CKHn <sup>*5</sup> rise time           | trCKHn | CKH*5 90% 90% 10%                                    | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKH=0ns |
|     | CKHn <sup>*5</sup> fall time           | tfCKHn | trCKHn tfCKHn                                        | to2CKH=0ns<br>tdSTH=181ns<br>thSTH=90 ns       |
| СКН | CKH1 fall $\rightarrow$ CKH2 rise time | to1CKH | *6<br><u>50%</u><br><u>CKH1</u><br><u>50%</u>        | ○ tdSTH=181ns<br>thSTH=90 ns                   |
|     | CKH1 rise $\rightarrow$ CKH2 fall time | to2CKH | CKH2<br>to2CKH to1CKH                                |                                                |

\*6 Time Measurement Definition

In wave form: Rightarrow defined as "+"

Leftarrow defined as "-"



The black round mark shows the benchmark.

© Eastman Kodak Company, 2002

ALE251SK1.11 DS

### (2)**V driver**

| Parameter |                               | Symbol | Waveform                                                                          | Condition                                           |
|-----------|-------------------------------|--------|-----------------------------------------------------------------------------------|-----------------------------------------------------|
|           | STV rise time                 | trSTV  | 90% 90%                                                                           | • CKVn <sup>*5</sup>                                |
|           | STV fall time                 | tfSTV  | $\begin{array}{c c} STV 10\% \\ \hline \\ trSTV \\ trSTV \\ tfSTV \\ \end{array}$ | to1CKV=0ns<br>to2CKV=0ns                            |
|           | STV data setup time           | tdSTV  | *6<br>STV<br>50%<br>%<br>50<br>%                                                  |                                                     |
| STV       | STV data hold time            | thSTV  | CKV2 tdSTV thSTV                                                                  |                                                     |
|           | STV fall<br>→ XSTV rise time  | to1STV | *6<br>STV<br>50%                                                                  | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKV=0ns      |
|           | STV rise<br>→ XSTV fall time  | to2STV | XSTV<br>50%<br>50%<br>50%<br>50%<br>to2STV<br>to1STV                              | to2CKV=0ns<br>tdSTV=6us<br>thSTV=57us               |
|           | CKVn <sup>*5</sup> rise time  | trCKVn | 90%<br>CKVn* 10% 90%                                                              | • CKHn*5<br>Duty 50%                                |
|           | CKVn <sup>*5</sup> fall time  | tfCKVn | trCKVn tfCKVn                                                                     | to1CKV=0ns<br>to2CKV=0ns<br>tdSTV=6us<br>thSTV=57us |
| CKV       | CKV1 fall<br>→ CKV2 rise time | to1CKV | *6 50%                                                                            | ○ tdSTV=6us<br>thSTV=57us                           |
|           | CKV1 rise<br>→ CKV2 fall time | to2CKV | CKV2<br>to2CKV to1CKV                                                             |                                                     |



# Preliminary

## ALE251SK1.11 DS

(2) **V driver** (continued from the previous page)

rvs110402 rev 1.11-2

| ·   |                                 |        |                                                           |                                                |
|-----|---------------------------------|--------|-----------------------------------------------------------|------------------------------------------------|
|     | ENB rise time                   | trENB  | 90%<br>ENB 90%<br>10%                                     | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKV=0ns |
|     | ENB fall time                   | tfENB  | tfENB trENB                                               | to2CKV=0ns                                     |
|     | CKV rise/fall<br>→ENB rise time | tdENB  | *6<br>CKV<br>                                             | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKV=0ns |
| ENB | ENB pulse width                 | twENB  | ENB 50%                                                   | to2CKV=0ns                                     |
|     | ENB rise<br>→ XENB fall time    | to1ENB | *6<br>ENB<br>50%<br>50%                                   | ○ CKHn <sup>*5</sup><br>Duty 50%<br>to1CKV=0ns |
|     | ENB fall<br>→ XENB rise time    | to2ENB | $ \begin{array}{c c}                                    $ | to2CKV=0ns<br>tdSTV=6us<br>thSTV=57us          |



ALE251SK1.11 DS

#### 9. Electrical Characteristics

#### 9.1 H driver

| Parameter                          | Symbol     | MIN  | TYP    | MAX    | Unit | Condition          |
|------------------------------------|------------|------|--------|--------|------|--------------------|
| CKHn input terminal capacity       | CCKHn      | -    | T.B.D. | T.B.D. | pF   |                    |
| STH input terminal capacity        | CSTH       | -    | T.B.D. | T.B.D. | pF   |                    |
| Video signal input terminal capaci | y CR,CG,CB | -    | T.B.D. | T.B.D. | pF   |                    |
| Input terminal current CKH         | 1 ICKH1    | -150 | -50    | -      | uA   | CKH1=GND,CKH2=High |
| Input terminal current CKH         | 2 ICHK2    | -150 | -50    | -      | uA   | CKH2=GND,CKH1=High |
| Input terminal current STH         | ISTH       | -150 | -50    | -      | uA   | STH=GND,XSTH=High  |
| Input terminal current XST         | H IXSTH    | -150 | -50    | -      | uA   | XSTH=GND,STH=High  |
| Electric current consumption       | IH         | -    | 1.6    | 2.3    | mA   |                    |

CKHn: CKH1, CKH2

#### 9.2 V driver

| Parameter                    | Symbol | MIN  | TYP    | MAX    | Unit | Condition          |
|------------------------------|--------|------|--------|--------|------|--------------------|
| CKVn input terminal capacity | CCKVn  | -    | T.B.D. | T.B.D. | pF   |                    |
| STV input terminal capacity  | CSTV   | -    | T.B.D. | T.B.D. | pF   |                    |
| ENB input terminal capacity  | CENB   | -    | T.B.D. | T.B.D. | pF   |                    |
| Input terminal current CKV1  | ICKV1  | -280 | -50    | -      | uA   | CKV1=GND,CKV2=High |
| Input terminal current CKV2  | ICHV2  | -360 | -50    | -      | uA   | CKV2=GND,CKV1=High |
| Input terminal current STV   | ISTV   | -280 | -50    | -      | uA   | STV=GND,XSTV=High  |
| Input terminal current XSTV  | IXSTV  | -360 | -50    | -      | uA   | XSTV=GND,STV=High  |
| Input terminal current ENB   | IENB   | -280 | -50    | -      | uA   | ENB=GND,XENB=High  |
| Input terminal current XENB  | IXENB  | -360 | -50    | -      | uA   | XENB=GND,ENB=High  |
| Electric current consumption | IV     | -    | 0.2    | 0.6    | mA   |                    |

CKVn: CKV1, CKV2

#### 9.3 Power Consumption by OLED Display

| Parameter                      | Symbol | MIN | ТҮР | MAX | Unit |
|--------------------------------|--------|-----|-----|-----|------|
| OLED display power consumption | PWR    | -   | -   | 2.2 | W    |

Conditions: White color in whole area (120cd/m<sup>2</sup>, 6000K), PVDD=+7V, CV=-7V, 60Hz driving, ambient lighting 1000[1x] at room temperature



ALE251SK1.11 DS

### 10. Electro-Optical Specification

10.1 Electro-Optical Characteristics

| Items measured                              |          | Symbol | Method | MIN    | TYP    | MAX    | Unit              |
|---------------------------------------------|----------|--------|--------|--------|--------|--------|-------------------|
| Contrast ratio (Am bient lighting 500 [lx]) |          | CR     | (1)    | 100    | -      | -      | -                 |
|                                             | ON time  | ton    | (2)    | -      | 5      | -      | us                |
| Response time                               | OFF time | toff   |        | -      | 5      | -      |                   |
|                                             |          | RCIEx  | (3)    | T.B.D. | T.B.D. | T.B.D. | -                 |
| Red chromaticity (display surface)          |          | RCIEy  |        | T.B.D. | T.B.D. | T.B.D. |                   |
| Green chromaticity (display surface)        |          | GCIEx  | (3)    | T.B.D. | T.B.D. | T.B.D. | -                 |
|                                             |          | GCIEy  |        | T.B.D. | T.B.D. | T.B.D. |                   |
| Dhue characticity (display confrom)         |          | BCIEx  |        | T.B.D. | T.B.D. | T.B.D. |                   |
| Brue chromaticity (display surface)         |          | BCIEy  | (3)    | T.B.D. | T.B.D. | T.B.D. | -                 |
| Display surface maximum white luminanc      |          | 2      | (3)    | 120    | -      | -      | cd/m <sup>2</sup> |
| Evenness                                    |          |        | (4)    | T.B.D. | -      | T.B.D. | %                 |



#### ALE251SK1.11 DS

10.2 Electro-Optical Characteristics Measuring Method

<Basic measuring condition>

a) Drive voltage

HVDD=VVDD=8.5V, VVSS=HVSS=0V, VBB=-4V

PVDD=SC=7V, CV=-7V

b) Measuring temperature

25°C unless otherwise specified

c) Measuring point

One point in the center of the screen unless otherwise specified; measuring points on the normal line (è line)

d) Measuring system

The following three systems are used as measuring systems.

Measuring system I (Contrast measuring system)



Measuring system II (Response time measuring system)



Measuring system III (Luminance uniformity)



Page 13

#### ALE251SK1.11 DS

#### (1) Contrast ratio

In the Measuring System I ( $f \not\equiv 0$ , halogen light source = 1000 [lx]), measure the display surface luminance Lw (white) under the condition of the display luminance being 120[cd/m<sup>2</sup>], 6500K and the display surface luminance Lb (black) under the condition of the luminance being 0[cd/m<sup>2</sup>]. Define the maximum value of the display surface ratio calculated by the following formula as contrast ratio CR.

$$CR = \frac{Lw(White)}{Lb(Black)}$$

(2) Response speed

In the Measuring System II, response speed is measured by the following method:

| Item                 | Conditions                                                       |
|----------------------|------------------------------------------------------------------|
| Ambient lighting     | 10[lx] or below in the darkroom                                  |
| Ambient temperature  | 25±3°C                                                           |
| Measuring instrument | Photosensor: Made by Hamamatsu Photonics Photodiode S3071        |
|                      | Photoamp: Made by Hamamatsu Photonics C8366                      |
| Measuring diameter   | $\phi$ 5 mm                                                      |
| Measuring position   | At 9 points selected voluntary within the effective display area |
| Measuring signal     | As shown below                                                   |



White signal display Display white signals for 3 dots written all at once







### ALE251SK1.11 DS

(3) Display surface luminance, chromaticity

In the Measuring System III, luminance and chromaticity are measured under the following conditions:

| Parameter            | Condition                               |
|----------------------|-----------------------------------------|
| Ambient lighting     | 10[lx] and below in the darkroom        |
| Ambient temperature  | 25± 3℃                                  |
| Measuring instrument | Color luminance meter (CA-210: Minolta) |
| Measuring diameter   | φ 27 mm                                 |
| Measuring position   | Center point of the display screen      |
| Video signal input   | Vsig = 0.6V (T. B. D.) and above        |
| Color temperature    | 6500K                                   |

(4) Measuring Conditions of Luminance uniformity

In the Measuring System III, luminance uniformity is measured by the following conditions:

| Parameter                                     | Parameter                                                                         |
|-----------------------------------------------|-----------------------------------------------------------------------------------|
| Ambient lighting                              | 10[1x] and below in the darkroom                                                  |
| Ambient temperature                           | 25±3°C                                                                            |
| Measuring instrument                          | T.B.D.                                                                            |
| Measuring diameter                            | φ 5mm                                                                             |
| Measuring point                               | At 9 points within the display area (see the figure below)                        |
| Calculation method of<br>luminance uniformity | Measure luminance at 9 points and calculate the value by the formula stated below |
| Screen display                                | White color in the whole area $(120 \text{ cd/m}, 6500 \text{ K})$                |
| Measuring time                                | Within 3 minutes from turning on the power                                        |

Calculation method of luminance uniformity:

#### MAX ( | (MAX(P1`P4, P6`P9)-P5)/P5 | , | P5-MIN(P1`P4, P6`P9) ) / P5 | ) X 100





ALE251SK1.11 DS

#### 11. Operation

#### 11.1 Description of the OLED display operation

-V driver, consisting of V shift resister, enable gate and buffer, outputs a selective pulse one by one sequentially to each of the 218 row electrodes in every horizontal period.

-The selective pulse is output when enable terminal is at the high-level.

-H driver, consisting of H shift resister, gate circuit and CMOS sample holder, outputs a selective pulse one by one sequentially to each of the 521 signal electrodes in every horizontal period. The video signals sampled by the pulse are sent to the row signal lines.

-The scanning direction of the H driver can be changed by the CSH terminal. When the CSH terminal is at the high level, the panel is scanned from left to right (normal scan) as seen from the front; at the low level, from right to left (reverse scan).

Also, the scanning direction of the V driver can be changed by the CSV terminal. When the CSV terminal is at the high level, the panel is scanned from top to bottom (normal scan) as seen from the front; at the low level, from bottom to top (reverse scan).

- -The V and H drivers mentioned above and TFTs (Thin Film Transistor) provided for each dot write display signals sequentially into each dot of 521 x 218 dots in every vertical period.
- -Dots are arranged to form RGB delta (delta arrangement) with shifting each sequence of R, G, and B dots by 1.5 dots per horizontal line. In order to input video signal to each dot correctly, H driver output pulse needs to be shifted by 1.5 dots against the horizontal sync signal per horizontal line.

-When you input video signals, please input them as negative signals.

-Relationship between V driver start pulse (STV) and the vertical direction display period and the one between H driver start pulse (STH) and the horizontal direction display period are shown in the figures below.

In case of displaying the vertical direction by reverse scanning, the phases of CKV1 and CKV2 get reversed.

(1) Display period in the vertical direction(CSV at the High level)



www.kodak.com/go/display

### ALE251SK1.11 DS

#### 11.2 RGB Simultaneous Sampling

Video signals of R, G and B are simultaneously sampled by H driver. Consequently, prior to inputting the signals to the panel, it is necessary that the video signal are adequately delay processed and the phase for each signal agrees with each other to prevent the horizontal resolution from degrading.

There are two methods in delay processing: one is the sample-hold method, and the other is the delay circuit method. The block diagrams of such methods are shown below.

This model is provided with the right/left inverting function. The following figures show the phase setting for normal scanning (CSH=high level). For the reverse scanning, replace the phase setting of B with G for usage.

(1) When the sample-hold method is used



<Explanatory diagrams for delay sample-hold pulse phases>



ALE251SK1.11 DS

## Preliminary rvs110402 rev 1.11-2

#### **12.** Appearance and Display Standard

|      | Category      | Items                                                                        | Criteria                                      |  |
|------|---------------|------------------------------------------------------------------------------|-----------------------------------------------|--|
|      |               | Flaw                                                                         | Shall not be appreciable when being lights on |  |
|      | Panel surface | Foreign matters                                                              | Shall be 200µm or smaller in mean diameter *7 |  |
| Ap   |               | Dent                                                                         |                                               |  |
| pear | Dirt          | Shall not be appreciable when being lights on                                |                                               |  |
| ance | Outer frame   | Flaw, burr, dirt, flexure                                                    | Shall not be readily appreciable              |  |
|      |               | Break, flaw                                                                  | Shall not be readily appreciable              |  |
| FPC  | Dirt          | Dirt on the terminal part shall not be readily appreciable by the naked eyes |                                               |  |

\*7 Definition of Mean Diameter





\*8 Definition of bright dots

- Visible through the 5% ND filter
- Count the number of bright dots when displaying black raster

\*9 Definition of unlit dots

- Count the number of dots which do not emit light when displaying RGB raster.

#### Inspection Method

| Parameter              | Appearance visual inspection                        | Display inspection (line/surface/dot)                                                |  |
|------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Ambient lighting       | 500~1000[lx] under the white fluorescent light      | 100~300 [lx] under the white fluorescent light                                       |  |
| Inspection<br>distance | To be inspected 35 cm away from the display surface | To be inspected 35 cm away from the display surface, from<br>the front (normal line) |  |
| Ambient<br>temperature | 25±                                                 | 5°C                                                                                  |  |



### ALE251SK1.11 DS

#### 13. Reliability Testing

#### 13.1 Reliability Testing Conditions

| Prel      | imi | ina | ry  |
|-----------|-----|-----|-----|
| rvs110402 | rev | 1.1 | 1-2 |

| Item                                         | Condition                                                                                                                                                                               |                | Grounds for judgment                  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
| High-temperature operation *10               | Display surface temperature 60C 240 hrs                                                                                                                                                 |                | See "13.2 Evaluation<br>Method" below |
| High-temperature/<br>high-humidity operation | Ta = 40C, $RH = 95%$ , no condensing 240                                                                                                                                                |                | See "13.2 Evaluation<br>Method" below |
| Low-temperature operation *10                | Ta = 0C                                                                                                                                                                                 | 240 hrs        | See "13.2 Evaluation<br>Method" below |
| High-temperature storage *10                 | Ta = 71C                                                                                                                                                                                | 240 hrs        | See "13.2 Evaluation<br>Method" below |
| Low-temperature storage *10                  | Ta = -32C 240 hrs                                                                                                                                                                       |                | See "13.2 Evaluation<br>Method" below |
| Heat cycle *10                               | -30C (8H.) ? ? 71C (8H) (non-operation)                                                                                                                                                 | 3 cycles       | See "13.2 Evaluation<br>Method" below |
| Resistance to static electricity             | C = 200 pF, R = 0 f¶: Discharge 3 times for each between power supply terminal and other terminals (non-operation)                                                                      | (TBD) V        | No breakdown                          |
| Surface discharge                            | C = 150 pF, $R = 330 f$ ¶: Impress positive and negative voltages on the display surface 5 times each (non-operation) with the outer frame being grounded.                              | (TBD) V        | No breakdown                          |
| Terminal strength (FPC)                      | Pull FPC up at 90 〈 and down at 90 〈 from front surface (non-operation)                                                                                                                 | 5N or<br>above | No error in functions and display     |
| Atmospheric Pressure                         | 507 hPa (non-operation)                                                                                                                                                                 | 2 hrs          | No error in functions and display     |
| Vibration (non-<br>assembled)                | 10 ~ 55 Hz, total amplitude 1.5mm, 10~55~10Hz,<br>period 5 min., 2 hours in each of X, Y, and Z direction<br>(non-operation).<br>(See the figure below for the fixing method.)          |                | No error in functions and display     |
| Impact (non-<br>assembled)                   | 980m/s <sup>2</sup> , t=6ms, 3 times each in $\pm X$ , $\pm Y$ , and $\pm Z$ direction, half-sine wave (non-operation)<br>(See the figure below for the fixing method.)                 |                | No error in functions and display     |
| Vibration (packaged)                         | 10~55Hz (logarithm sweeping), acceleration $9.8$ m/s <sup>2</sup> constant, 2 hours each (one way 1 hour) in X, Y, and Z direction                                                      |                | No error in functions and display     |
| Dropping (packaged)                          | For all 6 sides- from the height of 1m; for 4 edges -<br>from the height of 60cm; for two corners - from the<br>height of 60cm (according to SANYO Standard Drop<br>Test Specification) |                | No error in functions and display     |

OLED display Display scree surface Fixture Fixture body (setting on a testing machine)

#### 13.2 Evaluation Method

- -As a result of test, no significant change is found in appearance and display performance that may cause the problems in practical use (for items with \*10, after letting a panel stand for 2 hours at a normal temperature).
- -When doing operation test, the images displayed on the screen shall be white-bar images with scrolling.



### ALE251SK1.11 DS

13.3 Luminance degradation time

- Luminance degradation time shall be the shortest time from the results of the operation test for each of white,R,G,and B by using two types of luminance with the limited area of display on (window displaying) in white or R,G,B at room temperature.
- (1)Time that the luminance reaches 50% of the initial luminance when conducting the operation test at 120cd/m<sup>2</sup> and 6500K.
- (2)Time that the luminance reaches 70% of the initial luminance when conducing the operation test at 30cd/m2 and 6500K.
- When displaying the limited area (window displaying) in RGB, calculate the luminance for each color equivalent to 6500K.
- Luminance degradation time: T.B.D hours(Typ.)

#### 14. Cautionary Instructions in Handling

(1)Protection against static electricity

Since OLED displays are vulnerable to be damaged by static electricity, please handle the displays with sufficient protection against such electricity. We recommend you to take the following protections:

a)Wear antistatic gloves and an earth band when handling. (Do not touch electrodes.)

b)Wear antistatic clothes and conductive shoes.

c)Cover the floor and working table with conductive mats and keep any electrical-charged article away.

d)When handling OLED displays, eliminate electricity from them by using a discharge blower.

-Also, ground the outer frame when incorporating the display into your product.

(2)Protection against dusts and dirt

a)Keep the workplace clean.

b)When delivered, the display screen of an OLED panel is covered with a protection sheet. Peel the protection sheet off only after doing anti-static treatment for avoidance of making scratches on the panel surface.

#### <Recommended working method>

- -Use a discharge blower with the distance from an OLED display and blowing direction adjusted to the optimum value for the blower. **Blowing Direction**
- -Press a piece of cellophane tape onto the corner of the protection sheet close to the discharge blower (and FPC) for avoidance of making scratches on the display surface.



-Pull the cellophane tape slowly toward you along the panel surface to peel the protection sheet off. When you pull the tape, do it slowly enough to take 2 seconds or longer to finish peeling.

c)Do not touch the display surface because it is very vulnerable to damages. In an unavoidable case of removing dirt, please wipe it gently with cellulose wiper or lint free clean gauze.

d)In case that any dusts are attached to the display surface, blow them off by air blower

(We recommend you to use a discharge blower to eliminate dusts attached by static electricity.)



ALE251SK1.11 DS

## 14. Cautionary Instructions in Handling (continued)

### (3) Others

- a) Do not hold, twist or bend FPC (Flexible Printed Cable) because the connecting part of FPC is very vulnerable to twisting.
- b) Do not drop, or give any mechanical impact (e.g. hitting with a hammer or a tool) to, OLED displays; do not twist or bend the outer frame of the display.
- c) Keep OLED displays away from heaters, such as the soldering iron, or water or any solvents.
- d) Do not use the display under the condition of condensing or with water droplets attached to it because such conditions may cause the electrodes to be corroded when operating the display.
- e) OLED display is delivered packaged in the sealed aluminum bag. Use the display as soon as possible after opening the package because the appearance and characteristics of the display are subject to be changed by the ambient conditions. Avoid using or storing displays at high temperature or under high humidity since the appearance and characteristics are especially vulnerable under such conditions. In case of storage, please store the display as being packaged and sealed in the aluminum bag.
- f) Just in case of breaking an OLED display, do not put the OLED materials contained in the display into your mouth. When the organic materials are attached to the clothes, wash them off immediately with soap. Also please be careful for handling the broken glasses and edges of the outer frame.
- g) In case of disassembling an OLED display, operational performance and display quality will not be guaranteed.
- h) When incorporating an OLED display into your product, please avoid putting too much stress on it.
- i) Since the display surface is very vulnerable to scratches, please install a protection (e.g. acrylic case) on the surface in your product. When designing the product, please design the protection, such as an acrylic case, to avoid contacting with the module surface. (Secure the space of 0.5mm or larger in consideration of acrylic case being twisted by high temperature.)



ALE251SK1.11 DS

% One carton contains 200 products % One tray assembly contains stacked eleven trays. (the top tray is used dedicatedly as a lid) Aluminum bag (]4]@w) mm OSH) Drying agent<sup>,</sup>  $(\underline{3}_{18})$ Packing procedure (1) Place the products on the trays. (2) Put the tray assembly and two drying agents together in an aluminum packing bag, and then seal the opening side of the bag. (3) Place the aluminum bag in the outer carton. (4) Seal the outer carton. E ray assembly stored in an aluminum bag One tray contains 20 products Outer carton  $( \cap )$ (Face up the display surface) Tray % Product (m



© Eastman Kodak Company, 2002

ALE251SK1.11 DS

#### 16. Dimensions

Weight: 8g







#### ALE251SK1.11 DS

#### **17.** Dimensions with Metal Case (example)





ALE251SK1.11 DS

### **Revision History**

| Date    | Version | Revision                   |
|---------|---------|----------------------------|
| 1/23/03 | 1.11-1  | Line/Dot/Surface           |
| 2/05/03 | 1.11-2  | Drawing, title number 13.2 |

