SCHAUM'S OUTLINES OF

Theory and Problems of Signals and Systems

Hwei P. Hsu, Ph.D.
Professor of Electrical Engineering Fairleigh Dickinson University

SCHAUM'S OUTLINE SERIES

McGRAW-HILL
New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University and M.S. and Ph.D. from Case Institute of Technology. He has published several books which include Schaum's Outline of Analog and Digital Communications.

Schaum's Outline of Theory and Problems of

SIGNALS AND SYSTEMS

Copyright © 1995 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

4567891011121314151617181920 BAW BAW 99
ISBN 0-07-030641-9
Sponsoring Editor: John Aliano
Production Supervisor: Leroy Young
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hsu, Hwei P. (Hwei Piao), date
Schaum's outline of theory and problems of signals and systems / Hwei P. Hsu.
p. cm.-(Schaum's outline series)

Includes index.
ISBN 0-07-030641-9

1. Signal theory (Telecommunication) -Problems, exercises, etc.
I. Title.

TK5102.92.H78 1995
621.382'23-dc20

94-44820
CIP

McGraw-Hill

A Division of The McGnzw-Hill Companies

Review of Complex Numbers

C. 1 REPRESENTATION OF COMPLEX NUMBERS

The complex number z can be expressed in several ways.
Cartesian or rectangular form:

$$
\begin{equation*}
z=a+j b \tag{C.I}
\end{equation*}
$$

where $j=\sqrt{-1}$ and a and b are real numbers referred to the real part and the imaginary part of $z . a$ and b are often expressed as

$$
\begin{equation*}
a=\operatorname{Re}\{z\} \quad b=\operatorname{Im}\{z\} \tag{C.2}
\end{equation*}
$$

where "Re" denotes the "real part of" and "Im" denotes the "imaginary part of."
Polar form:

$$
\begin{equation*}
z=r e^{j \theta} \tag{C.3}
\end{equation*}
$$

where $r>0$ is the magnitude of z and θ is the angle or phase of z. These quantities are often written as

$$
\begin{equation*}
r=|z| \quad \theta=\angle z \tag{C.4}
\end{equation*}
$$

Figure C-1 is the graphical representation of z. Using Euler's formula,

$$
\begin{equation*}
e^{j \theta}=\cos \theta+j \sin \theta \tag{C.5}
\end{equation*}
$$

or from Fig. C-1 the relationships between the cartesian and polar representations of z are

$$
\begin{array}{ll}
a=r \cos \theta & b=r \sin \theta \\
r=\sqrt{a^{2}+b^{2}} & \theta=\tan ^{-1} \frac{b}{a} \tag{C.6b}
\end{array}
$$

Fig. C-1

C. 2 ADDITION, MULTIPLICATION, AND DIVISION

If $z_{1}=a_{1}+j b_{1}$ and $z_{2}=a_{2}+j b_{2}$, then

$$
\begin{gather*}
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right) \tag{C.7}\\
z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+j\left(a_{1} b_{2}+b_{1} a_{2}\right) \tag{C.8}\\
\frac{z_{1}}{z_{2}}=\frac{a_{1}+j b_{1}}{a_{2}+j b_{2}}=\frac{\left(a_{1}+j b_{1}\right)\left(a_{2}-j b_{2}\right)}{\left(a_{2}+j b_{2}\right)\left(a_{2}-j b_{2}\right)} \\
=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)+j\left(-a_{1} b_{2}+b_{1} a_{2}\right)}{a_{2}^{2}+b_{2}^{2}} \tag{C.9}
\end{gather*}
$$

If $z_{1}=r_{1} e^{j \theta_{1}}$ and $z_{2}=r_{2} e^{j \theta_{2}}$, then

$$
\begin{align*}
z_{1} z_{2} & =\left(r_{1} r_{2}\right) e^{j\left(\theta_{1}+\theta_{2}\right)} \tag{C.10}\\
\frac{z_{1}}{z_{2}} & =\left(\frac{r_{1}}{r_{2}}\right) e^{j\left(\theta_{1}-\theta_{2}\right)} \tag{C.11}
\end{align*}
$$

C. 3 THE COMPLEX CONJUGATE

The complex conjugate of z is denoted by z^{*} and is given by

$$
\begin{equation*}
z^{*}=a-j b=r e^{-j \theta} \tag{C.12}
\end{equation*}
$$

Useful relationships:

1. $z z^{*}=r^{2}$
2. $\frac{z}{z^{*}}=e^{j 2 \theta}$
3. $z+z^{*}=2 \operatorname{Re}\{z\}$
4. $z-z^{*}=j 2 \operatorname{Im}\{z\}$
5. $\left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}$
6. $\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}$
7. $\left(\frac{z_{1}}{z_{2}}\right)^{*}=\frac{z_{1}^{*}}{z_{2}^{*}}$

C. 4 POWERS AND ROOTS OF COMPLEX NUMBERS

The nth power of the complex number $z=r e^{j \theta}$ is

$$
\begin{equation*}
z^{n}=r^{n} e^{j n \theta}=r^{n}(\cos n \theta+j \sin n \theta) \tag{C.13}
\end{equation*}
$$

from which we have DeMoivre's relation

$$
\begin{equation*}
(\cos \theta+j \sin \theta)^{n}=\cos n \theta+j \sin n \theta \tag{C.14}
\end{equation*}
$$

The nth root of a complex z is the number w such that

$$
\begin{equation*}
w^{n}=z=r e^{j \theta} \tag{C.15}
\end{equation*}
$$

Thus, to find the nth root of a complex number z we must solve

$$
\begin{equation*}
w^{n}-r e^{j \theta}=0 \tag{C.16}
\end{equation*}
$$

which is an equation of degree n and hence has n roots. These roots are given by

$$
\begin{equation*}
w_{k}=r^{1 / n} e^{j[\theta+2(k-1) \pi] / n} \quad k=1,2, \ldots, n \tag{C.17}
\end{equation*}
$$

