Alternating Current (AC) Circuits

* We have been talking about DC circuits
— Constant currents and voltages
— Resistors
— Linear equations

 Now we introduce AC circuits
— Time-varying currents and voltages
— Resistors, capacitors, inductors (coils)
— Linear differential equations
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Recall water analogy for Ohm’s law...

(a) Battery
(b) Resistor




Now we add a steel tank with rubber sheet

(a) Battery

(b) Resistor
(c) Capacitor
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Water enters one side of the tank and leaves the
other, distending but not crossing the sheet.

At first, water seems to flow through tank, but then
pressure builds up pushing against the flow.

How to decrease capacitance of tank?

Make rubber sheet (a) smaller or (b) thicker.
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Charge, like water 1s practically incompressible,

PIPE WIRE
0000000900 ¢0e0 0
A S el SO e/ AR /
R R o> Do P
-EnERee—  o— _e_ L,
oed o0 v
AR A0 PR A @ © ©

H,0 MOLECOLE

but within a small volume (closely spaced plates)
charge can enter one side and leave the other,
without flowing across the space between.

ey - The apparent flow of

: O 1P | current through space
oO—p @] |OL—s between the plates (the

. ol [® “displacement current”) led

' ol le | Maxwell to discard the

', l‘ “ether” and derive equations

Vs we s e governing EM waves. 80



Basic Laws of Capacitance
* Capacitance C relates charge Q to voltage V'

2 X
V e

« Since Q:J Idt o )

V=— jldt M&
I= C— ;D

* Capacitance has units of Farads, F =1 Asec/V
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Charging a Capacitor with Battery Vy

* Voltage across resistor to find current (R
Vo=V (1
I( l_) — _B C ( )
R
* Basic law of capacitor
dV.(t
I(t)=C () o
dt diminishing returns

as cap becomes

» Differential Equation yields exponential charged x

dv.(t) L) Ve
V(1) +RC—=""2=V, S

ot (\“'é\
Vc(t):VB(l—e RC]

o R




What determines capacitance C?

* Area A of the plates
* Distance d between the plates
» Permittivity € of the dielectric between plates.

A OleD|®
d cl[S=
@7—3@

Alignment of dipoles within dielectric between plates
increases capacitor’s ability to store charge (capacitance).

Permittivity of a vacuum g, = 8.8541 x 10" *?F - m™1,
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Types of Capacitors

 Disk (Ceramic) Capacitor | ﬂ
— Non-polarized ‘ 77\

— Low leakage .
* 3 digits “ABC” = (AB plus C zeros)

— “682” = 6800 pF
— ~ 5pF - 0.1uF — “104” = 100,000 pF = 0.1yF
* Electrolytic Capacitor

— High leakage ‘ —+ _9""/""’“)
— Polarized /r — = =
- _

— High breakdown voltage

-

— Low breakdown voltage
— ~0.1uF - 10,000uF
* Supercapacitor (Electrochemical Double Layer)

— New. Effective spacing between plates in nanometers.

— Many Farads! May power cars someday.
84



Inductor (coil)

* Water Analogy

Co(‘ [//\

inductance 1s like
—  1nertia/momentum
of water 1n pipe with
ﬂywheel.

..__———>

V\ heavier flywheel
(coil wrapped around 1ron core)
adds to 1nertia/momentum.
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Joseph Henry

1797 — 1878

Invented 1msulation
Permitted construction
of much more powerful
electromagnets.
Derived mathematics for
“self-inductance”

Built early relays, used to
give telegraph range

Put Princeton Physics on
the map
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Basic LLaws of Inductance

Inductance L relates changes in the current to

voltages induced by changes 1in the magnetic
field produced by the current.

I:%Jth +\/(ﬂ_>’
(0002 —
V—Ldl —
i T

Inductance has units of Henries, H =1V sec / A.
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What determines inductance L 7

Assume a solenoid (coil) N oS
Area A of the coil m
Number of turns N

Length ¢ of the coil =z

Permeability u of the core

N*A
1

L=u

Permeability of a vacuum o = 1.2566x107°H - m™1.
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Energy Stored 1n Capacitor

j=ct

di
p=vi=vcZ
di

Eszdr

E=CdeV

E=Lcv
2
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Energy Stored in Caps and Coils

» (Capacitors store “potential” energy in electric field

F = 1 CV/? independent of history

2

* Inductors store “kinetic” energy in magnetic field

1
EF = —LJ]? independent of history

2

* Resistors don’t store energy at all!

the energy 1s dissipated as heat = V' X [
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Generating Sparks
 What if you suddenly try to stop a current?

+V
Al +V

T é #
dt J
‘L { goes to - .o when {
™ switch 1s opened.

use diode to shunt
current, protect switch.

* Nothing changes instantly in Nature.
* Spark coil used 1n early radio (Titanic).
» Tesla patented the spark plug.
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Symmetry of Electromagnetism
(from an electronics component point of view)

L j=ct Vzijldt
] dt C
v=r4 Izledt
dt L

* Only difference 1s no magnetic monopole.
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Inductance adds like Resistance

Series

L.=1L,+1L,

Parallel
1

be =7 ¥ 1/L,
LqiL,
Ly =
L, + L,
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Capacitance adds like Conductance

L Series
1
C, —

C
T > 1/C, +1/Cy
T Ca
; C1C;
STC+ G,

= (1 + Gy

I Parallel
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Distribution of charge and voltage on multiple capacitors

* To find the charge 1n capacitors in parallel
o Find total effective capacitance Cry,y

o Charge will be Opyi; = CrowlV
o Same voltage will be on all caps (Kirchoff’s Voltage Law)

Oroa = Vo =0, + 0, \?

C‘ — _L C?_
0, =VC 1
Qz — VCz <L

o Qrora distributed proportional to capacitance
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Distribution of charge and voltage on multiple capacitors

To find the voltages V; and V/, on capacitors in series

— Find total effective capacitance Cgtq]
— Charge will be follow the rule for capacitance:

QTotal — CTotal V

— Same charge on both caps (Kirchhoff’s Current Law) V, 2_ l '

(rotal = U1 = Q>

( CTotal < Cl )

Vl 1S what C
pOl’tiOl’l ‘/1 — % — QTotal — Total V
of V? ¢ G ¢
V2 — Q2 — QTotal — CTotal V
C2 C2 C2

— Voltage distributed 1nversely proportional to capacitance

Ca
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What 1s Magnetism?

» Lorenz Contraction ¢=/¢,,/1—v*/c’

Length ¢ of object wire 1 =5

observed 1n relative %_, %_, o O O~ @
motion to the object is ‘—F:g(; | .
shorter than the WIWRE Ak _ a

. o — ®
object’s length £, in its {_g 2 e?; 2R S

own rest frame as s
velocity v approaches

speed of light c. __

W%‘) <‘@® FRAme OF
: : e O ELECTRMNG
Thus electrons in Wire 1 22— e s \r\\%\\eé N e 1
see Wire 2 as negatively X g“:i‘T:?fQ *x
charged and repel it: WIRE 2

: CHD B «® @ <@
Magnetism! 6000000 CDSO <
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AC circuit analysis uses Sinusoids

{3
_ X CSng - - —-- 5
Cog O = T~ ¥/l\ [ 0 ﬁ
' J|\J ZOTHINN
v C cos B
Sin = — _N 1
: a er\\] ° 1s yost Fhe
50\\5\(\% COgie -+ S|/\1@ -:] Pﬁwm:-('eaf\
Z(—‘J_ ~ ‘\_/__l _ ‘ ocew
A (—’L
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Superposition of Sinusoids

Adding two sinusoids of the same frequency,
no matter what their amplitudes and phases,
yields a sinusoid of the same frequency.

Why? Trigonometry does not have an answer.

Linear systems change only phase and
amplitude

New frequencies do not appear.
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Sinusoids with amplitude of 1 are projections
of a unit vector spinning around the origin.

when (= | ;/ N N
Vy = cos © \ , Sind
\/7 = S e X — T g
Car&\ﬁm\ (6 QNI O(G. 0&'\' /‘ &J\ 4+ U
OGN 0«*‘0\"\‘@’"\3 ‘CQ \ (’P°3QC'+’°’\
oNn Y AN S
\
S v CoS VS ‘ M 4
anw SinvSo PG ar‘b*‘m\rcﬁ

3\)51‘ o ™ afle - < Sinuserd

of where Yo -\
| M

s«\s =0 T4

projection ©N
X ak!\S 100




Derivative shifts 90° to the left

)}

4

Sin 6 4§
——=--cos86 |5
e e 0o s —5100 <
3

- — co$ Aé
sSin N/

Taking a second derivative inverts a sinusoid.
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Hooke’s Law

S{‘\pénesc ok SPrnly

| d\.
& |
N 0\9 &\s \outemeﬁ/‘—
F = ma Sinusoids result when a
= d = — (m) aq  function is proportional
F =—kd K to its own negative
\ second derivative.

constant

Pervasive in nature: swings, flutes, guitar strings,

electron orbits, light waves, sound waves... 02



Orbit of the Moon — Hook’s Law 1n 2D

velocity @
/ is perpendicular

to displacement O

%(‘)(\\ acceleration

1s negative of
displacement
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Complex numbers

* Cartesian and Polar forms on complex plane.

* Not vectors, though they add like vectors.

* Can multiply two together (not so with vectors).

—

e ><—\~5UB

Y =560

&

C
e

z

To make \T
vMaue ; Thou ")
O 1% ac‘\“uo}\j

Pet‘lodnc.
©=0+\K i\

Re

9=’1’an'|(;y(> ¥

\
\
|
X =

. *3 ...
ccos B\ K=0,E473
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Complex Numbers

£

 How to find » 2

Y=0¢sind|=-

O\ A |

e

Z:x'*’juﬁ o Re

X=ccosh

\

\ | 1
Mmodolus — | 2| = x> +vy*
ot = V/t__:/_/ Notes g 15

“O\\.DSO‘\U'\'Q va\ue“ _ not _\[—%T )
1S st o :\[r*wsle (a0 | but  coYher
SQ\:.Q\OJ\ CoSe r‘\[ - 78 \ the \er\%ﬂ\
wwnere =0 |, - oS B SN €+

A C~— D\ e
1 ne , ¢

= F) which 1S o\\wmﬁg >0
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“Phasor” - Polar form of Complex Number

FIFS)\'7
FT\XQ& U_/\_liPL\CASO(\) {~

1T
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Cartesian and Polar forms (cont...)

Now)Car amg Qon\p\ﬁx nuMmbe — %:X""\S\ﬁ
m

snny
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Complex Conjugates

Complex CMS —~ Fe@leéf ACroSs X-axs
Svm

,51 A Z =X +_;‘§ = l?_
4’Z9< A RQ/ a\sﬁ‘ﬂ-\‘ﬁ meand comp\@,x Coc\:su%a'f(e
8 16
_BW'P\‘ %— “X“‘Jﬂ CeXC ne‘sc(\'wc Sy
proé\oc?\'

(x-x—_;ﬂ\(%*.\j\"\ ““‘6 = 2
oc with P\f\o\sDr‘s) P\\ase cancels ouT

- 9 (6-6)
((‘e‘eﬁ(r : @3 —(\e__r

= Z_ \ Z\R"mOA\)\uS ! 108



Multiplying two complex numbers
rotates by each other’s phase
and scales by each other’s magnitude.

N\essy
Eoiza v ! Y\Wz ?e\iﬂ =
(rl V(e ) =
N (8, +8)y)
(r‘ rl\ e \/P;?:T:&“M

\/\(v
Scole eanithar  TT8F
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Dividing two complex numbers
rotates the phase backwards and scales
as the quotient of the magnitudes.

CV . R
Me,sse&gr‘) (X, "'JYl\/(XL“'JYl i
C, 3(8,—©2)
— O
("2, one rotate s

S0 ot Yhe S
Scole eocth - =y
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How to simplify a complex number
in the denominator

| X-yY

\

o i i S
x rotate

X )7 A

-y
—

backwards

real part imaginary part
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Go oyt e cThe W

Cor\\ret"\" The ‘\VO\\OUQH\ CDW\Q\QA f\Of‘f\\Oerg
o CO\P'\('GSlOJ\ CDOC‘A\A&ﬂ\*QS x,,.\'y)) df&ww\cs A

P\C\‘ure M The conplex P\c\r\e
T I~

® 39_3‘51 r-ﬁ\ T x=0 ,W=3
> la== 2

( Re Z =0+ )
- _\aT AT o _ 0
@ -3e --ae = 38 = )

Since Ww==~o
> : AT K) Since s
V6 - .3(6"' 6 \ 0—“'3
e = e¥= o (
\< - O)j: |)ta\)' e
&N\
=0

,,%gz—g—Qe
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o ) _ x -
® =P T =e’T =07
) X = O
s
-~ =TT
= i/ =73
The “squiggly” y 1itself is real:
bracket: not an the coordinate on

algebraic expression. the imaginary axis
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Examples

ConverT e Qo\loumm3 C’.O/\(\p\eﬁ nombers
‘f‘D Po\o\r coocdnate S ('8,36
20 -TM¢OET

L
o) [ cfat-3e o

o . - I

- —

L
X = o Re T

_ e?_—%g
= AR &

W= —-uﬁz“
& o=\

‘H\ere@-ere

)
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L@,T'_g Cev e '\’\\Q &H\mer\gmna\\d\g
O@ Pp\ﬂ\SQ O\r\d\ Crac\uencvs.m

@[\: pt’\O\SQ = a,\%\e

(ASU&\‘LS [\ ("O\A\o\r\s
— )

Cﬂ(‘,\eg
L C‘ddﬁ; 260 &ecsr‘ee% = AW adians
QSLG*H\\S 1S PV\CASQ
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Rotating any complex number by + or - 90°

- 1) -
: . e

l " Re

M\)H—Ap\glnol bﬂ A
(‘O'HJVGS O\f\"; CON\Q\EX y\uzv\\oer"

\OUS a0°
&\\/w&m% \D\S \ oYAves b‘{) — 40 ‘
[ | =3 4R
bQCka)&Q — = T = S = l&
2 S 7
A

e
Y
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(3\/\0\39_ = Brequen < T '
ei(wt% 322‘1%1:) as 0

(o = am -

2
g\("QQ\)Q(\Q XA /t, GPQC\\)Q(\CS (N
o ng /SQC cucleg / Sec

T = L = 2%

4 -
peCio A\ 27, NOt T
Sego«\é\s/ C ‘SC’ 1s the magic m’lmber
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Now make the
phasor spin at

w=2rf

Note: frequency

can be negative;

phasor can spin
backwards.

- e’

amp) iTud

T

Y

Cf“equenag,s

AL

- c/og(ch\‘*') csin (wt)

\ e complex plane

I’PQ(‘\ 03‘\\ = —‘—

c
. J
o
w

e _ +

|
-

—
-

&q_m) a0 J

-

T Swt -‘-(\Slﬁ(w‘t\
e 5= o0

\ note raX

glm?l’a)%’aﬂ ~+

vl

- - - —

ol

g 1€ A

ceol N uoel
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Multiplying by j shifts the phase by 90°
Y S""o\/‘\' w l“\'}\ A

J M()H'lphﬁ b‘ﬁ:} ) AOU C;}d' '),"|)").,1-
0 e
= + —
l/ \l s‘m@-{- b'ﬁ +QD T
_ \7 j R
R goC -d)\o ‘e Sanne ‘\/\(\<(\05b3\\9,(\ LSO\)\
E\’Q\KQSD“(Y%Q\( d?ei;\\)o\"twe,, .
i A@j 3 38,) (u)';l\
J=e 2\ At
2 g oS st solution to
6 =90° dMel = 3 ) C = - HOOke,S LaW

Just like a sinusoid: shifts 90° with each derivativel.zo



All algebraic operations work with complex numbers

What does 1t mean to raise something to an imaginary power?
« Consider case of e/*! with w = 1

\. ET -+ .:‘.-—-.'-—\" —5:-' )
cn(®)=0 + t+ o t: . &~ + 7.,
2| s
» 2 . :
L1+ 0 -5 + 0+ v 0
| R PN
jnt= 0+ 3E 0 TIF+ O T g
-t L LD L S By
e T t t =
e = I -\t- T IHm 5 T2
— .
S’ = cos(t) * yonlE)

Euler’s Identity
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Consider ¢’ graphically.

Its derivative

jwe’™

1m

<>/e;'a)t

jat
dz _ ] e jor
[

Ie

1s rotated by 90° and scaled by @ at all times.
Thus 1t spins 1n a circle with velocity @,

. A
and since €’ =1 when =0,

e’ = coswt + jsin wt

Euler’s Identity
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Voltages and Currents are Real

ReGed=x =N +XP 2 4 2%

e (oo 2\
G $26 = 9 Mt el XT3z g
A ) 2

"rhe ‘M&S“\WS Cood aﬂa+e lﬁ }S I‘TI\SQ\C (\QO\\

Z = x +( 3y «— This (g
|m0\3mc\r’\3,

123



éﬁ

Cosine 1s sum of 2 phasors

compPlew QOnyvGaTeS
AN prex >Y3 i “wt 1 .

ks @
CDS(I«)‘E} :&ege} t%-: 5 —

‘ 4+ 6N coS:
o ) WC Sg) 5Track o -
« '\ | oy r\a\fxs po
negative |-
\Qraqoenc% )
bac\cwwd § QPM ,\”\6 pt\&SoP) w_ﬁ\_eyg CQA:' Q&C&'\-Q
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Sine 1s difference between 2 phasors

/\ sy e et
w wT SN (th\ %%_85

. \\N‘ —{’\ms 1S 5\ a\,j
S Ceo\ NnomHer
—wC 50 mosT A\M
WA \0«5 )
‘)"0 aetT <N 3

SV \D'k'(‘aC‘V OG‘G
reol Q Ay .
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Trigonometry Revealed

(\QJ\(\GW\\Y)Q/( he end OC 'h’“\%?

1N ot = Q\Sw\two’t
Cos Qb = Cos™ t —suit

|
Sin -t = ) \f}a(,_wgt)

%ou& M%h\(&%&f\"\
on foath. ..

No longer ,’
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Now ADA LA PBYR e m

Qv«a\w\p\a
Cos™ b =
> L
' / ’ 6 - LB O
L > “
3 Cos b —+ _L_-
— ___9\ iy
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Why have we learned the math of phasors?

We will now see how resistance 1s just the real
part of a complex parameter, impedance.

Resistors have real impedance. Capacitors and
inductors have 1maginary impedance.

All the laws we have learned in DC for
resistance apply in AC for impedance.

Thus we can solve complicated differential
equations using algebra (of complex numbers).

To derive impedance, we consider the function
et as the orthogonal basis set from which any
voltage or current can be built (Fourier).
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Complex Impedance - Capacitor

Com\e lox. nmpea\an ce %
ceplaces resistance R w\’}‘é;bj 153
T e (t)
T o) = ¢ AVt |{2
AKX ™A
represents Q
ywt  orthogonal \/a(t\)

\C Ve (t) = €7« basis set
Then T o@)=jwle®*"

CO(Y\P\‘Q)/\ ::M(DQAOMLQ_ US(/}6 O"\(Y\S Law
2, = Yol vt ‘

,
)
= —

To(t)  wCed®® 7w we

S—
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Complex Impedance - Inductor

Lilce wise ‘QDF‘ o coll

:LL('&B
V() = o%‘\;ca e
P TL)= et x\/dﬂy

Com-@(ex lr\r\Qe&o\r\C{ st

1 (&) &swt
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Complex Impedance - Resistor

Woha™ s Comglext 1mpedance of reqistor

ot

Wd&”= QP
Tz
K

Zr = | R

R

— AN —

&

Ve (&)

XUUt

PuCe 2o\
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Impedance on the Complex Plane

ComMP LEK
T MPEDAN CE

Z Tnaductance
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Taxonomy of Impedance

ComQlex Tmpedance

\
@ Cesistance K= 00 e 6

/

ImpedanCe = M \
P Mh C“PQC\\'Q(\CQ Xc =_—
- "admiTTance N\ ) / Jwe

\
E Ceaclonce

2 \\ indocTan e Ao = 5u¢{_

M gomeimes
used. (¢
Qorek
(N\OKG:)H%O\«"UBJ
ol sd?;t. i
"2 and Z.
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Series Capacitors and Inductors

SQQQS

Z\*%&

Z =~ + — = — =
joC,  joC, joCC, (

Two capacitors in series:

1 1 C+C,

J

Two 1inductors 1n series:

Z = joL + joL, = jo(L +L,)
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Parallel Capacitors and Inductors

po (‘o\\\ c \

Two capacitors in parallel:

1 1
 joC, + joC, jo(C,+C,)

Z

| Two inductors in parallel:
z ‘ 2'.3. ( \

4= A A

ja)Ll ijz \Ll Lz)
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Same rules as DC circuits

Now using AC voltage and current sources

and complex impedance Z

THEVENIN EQUIVALENT
AV NETWDRY- OF

-

zZ

- 9 >

NORTDON  EQUINALENT

Ay RETWORK 0F

o ® e D

~
‘@

40

o=
)

AC sources

1(7)

B
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Impedance of a Passive Branch — RC circuit

YRR
W AN\ TIme Cond‘a/\'f‘
' /\.V\
_)uoC. — ch
Z= R I Resistor domindes

W > QC-

2= — C apac for domndfes

JjwcC w <<QC
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LC circuit - Resonance

L -
(530 L J‘ {— | +ime coastant
| . )
. | =W -C
- —+ - .
Zz = I L 3w C yw C
“< =0 ) \ RESONGNLL
wy = —
e Analogous to spring
Fr— and weight system —
At re;onance, 5 Energy in passed
lrgge ances Re between magnetic
add to zero Zc and electric fields,
and cancel.

puce rec o oV as in electromagnetic

wave. 138



Adding R to LC damps the ringing

L ¢ R
e, oW | N

N
Like dragging
2 = \wl + _'_ + R= your feet on the
e swing. Energy
|— WP Le L e = lf)eing passed.
, rom magnetic
2 WE to electric field
(@ Lo~ 3 L R eventually
\ dissipated by
@Wf”} pore ReeS resistor as heat.

Con nNever
z|ze 9. Q@\ua&\ Z2eco
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“Tank” Circuit

1
(30’\’ col and Cof IN /oop | cool cpcT
Speed of hghT
C - \ permiability
B G and
Moo ™ | ermitivity
“'N’VJO\/*\L,Q“ ond
" ‘\C\‘\‘Mnge“oc
e spoce
around loop L (s
CU('(‘QI\'&/AS‘QQS Nno W\\()Q‘(lanqe_
l
=
(L_C.
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vel
aotennol N C0dio recs | )
4 Z= 1 . - L oy iwc T
Jwl R e
\/DUT JUJC
4
L C current iS NOW AW L - oQ \
through loop 2 - —_—
- rather than | — ¥ EC w {Le
around 1t

 How can impedance be infinite through the parallel LC circuit
when each of the components can pass current?

» At the resonant frequency the currents trying to pass from the
antenna to ground are shifted 90° in opposite directions and
thus are 180° out of phase and cancel. No net current!

* This “null point” 1s an example of destructive interference,
how lenses work with light (described by phasors 3D space).
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Phasor Notation

* In BioE 1310, complex exponentials may be
described with shorthand “phasor notation”

0
re” =>"r/0"

« Unfortunately, this abbreviation 1s widely used to
represent real voltages and currents, with no
consensus as to whether 1t means sin or cos, peak
or root mean squared (RMS). Thus, A0 may
mean (among other things)

A

v(t) = ﬁsin(wt + 9)

or

v(t)= Acos(wt +6)
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Phasor Notation Ambiguity (cont...)

* This ambiguity 1s allowed to continue because linear
systems change only magnitude and phase.

* Thus a given network of coils, capacitors, and
resistors will cause the same relative change 1n

v(t) = %sin(a)t+8)

as 1t does 1n

v(t)= Acos(wt +6)

so 1t doesn’t matter which definition of AZ6 1s used
for real signals, so long as it remains consistent.

http://www.vialab.org/Bioe_1310/pdf/PhasorNotationManifesto.pdf 143



Sample Problems with Phasor Notation
Using our unambiguous definition of phasor notation,
r/0=re”

Express the following as a complex number 1n Cartesian form
(x +1»):
(4£45°)(6£45°)=24.,90°=0+24

* In other words, for multiplication, multiply the magnitudes
and add the phases.

* For division, divide the magnitudes and subtract the phases.

6£30°

=2/-60°=1-j/3
3./90°
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Another look at Superposition

Asin(wr)+ Bcos(wt)
combine to form a sinusoid with frequency o,

and how any sum of sinusoids with frequency @

amplitude frequency phase

Lol

Z Al. COS (a)t + Hl.) 1s a sinusoid with frequency w
i \ )

|

any sinusoid of frequency ®
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Example: cos(?) + sin(f), w =1

AN cos (1)

N
/—\ SlIl

cos(t)+sin(t) =
\//\ J2 cos| 1 - %j

.. 1s sitnusoid of same frequency.

|
, ,
o
r r
| |
N L
L - RN =]
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* Two phasors of the same frequency and direction sum to a

third phasor of the same frequency and direction.

* They form a rigid spinning body.

--------

e

-
-

Single phasor ()

Sum of two phasors y(¢) = y;(¢) + y,(¢)
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Recall complex conjugate pairs of phasors

e’ +e e/ —e
Im COS(t) — 2 Im Sln(t) — 2 .
A !
e’ Y
_ P €
2 2]
_M
= = =3 Re , Re
it | Jt
e i _
2 2]
(recall % =—j)

positive (solid) and negative (dashed) frequency.
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Adding cos and sin conjugate pairs (black)...

Im

...creates single conjugate pair (gray).

co(t) +sin(r) =2 cos(t—%)

hypotenuse 149



Fourier Series
Applies only to periodic signals

Inverse Fourier Series
oo

t
x(1)= 2 ane""wi
n=—oo 1
fundamental
/ frequency wy
harmonic
number

|
Fourier coefficient: stationary phasors

(complex numbers) for each harmonic »
determines magnitude and phase
of that particular harmonic.

Any periodic signal x (¢)
consists of a series of
sinusoidal harmonics of a
fundamental frequency wy.

For real x(¢), the phasor at
eachn > 0, spinning at
nwy 1s paired with a
complex conjugate phasor
at —n, spinning in the other
direction at —nw, .

The “DC” harmonic, at
n = 0, has a constant value
of Ag. 150



The #™ harmonic can also be written as a
weighted sum of sin and cos at frequency nwy.

A, (cosnwyt) + B, (sinnwyt)

creating a single sinusoid whose phase and amplitude
are determined by real coefficients A,, and B,,.

The zero harmonic #» =0 (DC)
1s a cosine of zero frequency

A, cos(07)
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Building a square wave by
adding the odd harmonics:

1,3,5,7...

An infinite number of
harmonics are needed for a
theoretical square wave.

The harmonics account for
the harsher tone of the
square wave (buzzer),
compared to just the
fundamental 1rst harmonic
sinusoid (flute).
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Fourier Series: How to find coefficient g,

Inverse Fourier Seri SRR
verse Fourier Series Periodic signal x (¢)

oo
X ( t) _ Z q el consists of ph.asors.
" forming the sinusoidal
harmonics of @ 0

Nn=—oo

Fourier Series .
Backward-spinning

1 - — jnyt .
— — jnwt phasor e spins
a, = T X (t )‘f '\ dt the entire set of phasors
1 0 7, in x(¢), making the
fundamental

particular phasor e’

frequency (g still.

backwards-spinning

stationary All other ph
hasor. other phasors
Ehasor fpr P o complete 7 revolutions,
AmOnIC  yeriod 1, =— integrating to 0.

number # a)O 153



Fourier Transform
Applies to any finite signal (not just periodic)

Fourier coefficient a,,

Inverse Fourier Transform
has now become a

1+ - continues function
_ jot
X (t ) o X (60) e’ dw of frequency, X(w),
2 —o0
T with phasors possible

at every frequency.
Fourier Transform X(@) is a stationary
oo | phasor for any
X (a)) — J X (t) e’ dt particular w that
—oo determines the
T magnitude and phase

. of the corresponding
As before, backwards-spinning phasor makes phasor el i A{0).

corresponding component of x(t) stand still. 154



The complex exponential e/®t forms
an orthogonal basis set for any signal.

Each phasor passes through a linear system without
affecting the system’s response to any other.

To understand a linear system, all we need to know 1s
what it does to e/?t for all values of w.

This 1s the linear system’s frequency response.

A linear system can only change the phase and
amplitude of a given phasor, not its frequency, by
multiplying 1t by a stationary phasor H(w), the

frequency response of the system. 55



Frequency component X (w)e’®*

The mverse Fourier Transform builds x (¢) from
phasors at every frequency.

| S .
(1) =— [~ X ()¢ dw
27[ —oco | ' J
... stationary phasor X (w) scales the magnitude and

rotates the phase of unit spinning phasor e/¢?.

- -0
o i Re”

N \ ik
\ X(w 1.0 4’/;< [u)ye.) >
"
aaiiih Re b Re
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Systems modeled as Filters

» We describe input and output signals as spectra X (w)

and Y (w), the amplitude and phase of e/®t at w.

« System’s transfer function H(w) changes the magnitude
and phase of X(w) to yield Y(w) by multiplication.

* H(w) is just another stationary phasor representing
the amplitude gain and phase skiff of the system.

X(wo) —{ HW) = V(W)

Y(w) =H(w) X(w)

X(w) 157



Systems modeled as Filters

Y(w)

X(w) —{ HW = Y(w\  H(w)= X (@)

* Consider system with voltage divider of complex impedances.

X(W\ P Zz} ] 7 W) Z,
z

Hl(w) =
(@) Z+7Z,

\

* Same rule applies as with resistor voltage divider.

» Impedance divider changes the amplitude and phase of X (w)e/®t.
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Example: RC High-Pass Filter

(W)= — Y O
G =R

R JORC
H(w)= 1 1+ jwRC
R+— J
jaoC
At high frequencies, acts likea (0)=1, ©>> e
piece of wire. o RC
At low frequencies, attenuates H(w)= joRC, o << 1
and differentiates. N ’ RC

Key frequency 1s reciprocal of time constant RC.
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Example: LR Low-Pass Filter
KWD) P— Y)  yy=r@

(w)
R 1
H0)= oL L
J 1+ jo—
R
. o R
At low tfrequenaes, acts like a H(o)z1, o<<—
plece of wire. L
At high frequencies, H(w)z——, o>>—
attenuates and integrates. JoL L

Key frequency 1s reciprocal of time constant L/R.
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Example: RC Low-Pass Filter

Y(a))
H(w)=
X ((p\ —N\N\- Y(w) (@)= X(w)
! _ joC 1
H (@) Il 1+ jowRC
R+— JO
. . joC
At low frequencies, acts like a
piece of wire. H(w)=1, o<< 1
(assuming no current at output) RC
At high frequeqcies, H(w)=- 1 Cw>> 1
attenuates and integrates. JWRC RC

Key frequency 1s reciprocal of time constant RC.
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Decibels — ratio of gain (attenuation)

1 Bell = 10 dB = order of magnitude 1n power

P !
1dB= 1010g10( }‘;” ]

n

soif P,=1Wand P, ,=100W = 20dB

Since 2
power o< voltage

You
1dB= ZOlogm( > j

n

Alexander
Graham Bell

soif V. =1Vand V,, =10V = 20dB

dB is a pure ratio (no units) as opposed to dB,, (power
compared to 1 mW), dBy (voltage compared to 1 V), dBgp;.
(sound pressure level compared to threshold of hearing), etc. |,



Magnitude and Phase of Low-Pass Filter

Recall low-pass filter:

Y (05 — NN\ Y(w) H(w )_

R :fC_ 1+ jwRC

At corner (or “cut-off”) frequency, wc = 1/RC,

1 1 1—7
H ( a)) ] J
1+ 1 j 2
Magnitude (Gain/Attenuation) Phase
: _1
‘H(a))‘ = ‘I_T]‘ = % /ZH(w)= arctan[ yf]

H(w) =-3dB ZH (@)= -45°
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“Bode” Plot of Low Pass Filter (previous slide)

Corner
| Vout Frequency
Gain =20 log Vi fe
plot of 0d | |
3dB <«—-3dB (459
Frequency Slope =
‘H (a))‘ - Response -20dB/Decade
E e
Bandwidth
-
and Phase fc(P) Frequency(Hz)
0° (Logarithmic Scale)
Phase
(this one vs. f, not w) Shift
-90°
http://www.electronics-tutorials.ws/filter/filter_2.html

Frequency (Hz) 164



Magnitude and Phase of High-Pass Filter

Recall high-pass filter:
| '
(W)L V(W) H(w )= jwRC
& R 1+ jwRC
At cut-off frequency, wc = 1/RC,
1= 1+
I1+7 1—7 2
Magnitude Phase
1+j] 1 1
H = |——| = — — L~
H(o) RN /H (o) arctan[%]

H(w)|=-3dB ZH (w) = 45°
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“Bode” Plot of High Pass Filter (previous slide)

Gain (dB) = 20 log Yout

Simply a log/log
plot of

0dB }

Vin
Stop Band )

N
Pass Band

v

Frequency
Response

Slope =
| +20dB/Decade

Bandwidth
o8 | -
Ph fc(HP) Frequency (Hz)
and +gooase (Logarithmic Scale)
ZH (a)) +45°
(this one vs. f, not w) 0
http://www.electronics-tutorials.ws/filter/filter_2.html

Frequency (Hz)
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Values for AC Voltage

Pk, 1 TN
or ~ N
“Max” Vy J ‘\
(CR t M ”
“Peak-to Peak” oot Mean Square

Vv
Vop /}_i_-_\_‘ et RMS

* Any sinusoidal signal J(¢) has all three values.

« Since sin? + cos? = 1, and since sin? and cos? must each have the
same mean value, each must have a mean value of Y.

 Or put another way: (a)t) 1+cos(2wr)
2 =~

mean = v

. . v,
* Therefore, for a sinusoid Vi, = £

2
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RMS used to compute AC Power 1n Resistor

When V and I are in-phase
(resistor), average poOwer 1s
defined as 1n DC.

Energy is not stored in the

resistor, but simply dissipated P = Viye X Lpyys =

as heat.

Power 1n a resistor may be
computed from Vp or Iy for
sinusoids, or from Vgyg OF
Izyis for any signal.

v \ (‘t\?

e INNTT TS
)

T )

For any signal 1n a resistor:

_ (VRMS )2
R

2

= (IRMS) K

For sinusoids:

1 1(v,) 1
Pzavpxlpza(;) =5(1P)2R
because

VP IP

Veus = ﬁ and 1, = ﬁ



AC Power 1n Capacitor or Inductor

. () VNN
Since Vyyg and Ixyg are 90° out- f o ¥ -f T
of-phase 1n capacitor or inductor, ”(__L_-,m _'..r__,
the power dissipated is 0. T &) TN

sin(2wt
cos(wt)sin(wt) = (2 ) i M
!I
\ |
average = (0

SN

sin and cos have zero correlation:
The integral of their product = 0

1
O am

Thus no heat 1s dissipated, all X

stored energy returned to circuit + - + -

sin and cos have O correlation
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Transformer

1ron core

,\ i - ImPEDANC E
m'fo{‘(\s N 'tu(‘r'\s

* Allows voltage (AC) to be changed: V,= %Vl

« Extremely efficient at preserving power: V;1; = V, 1,
* Voltages and currents in RMS assumed to be sinusoids
* (Can be step-up transtormers (N>M) or step-down (N<M)

* Permits efficient high-voltage power transmission, with
small current: thus little /2R energy wasted in long wires.

* Transformers also used to provide isolation for safety.
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World’s Fair

,({'O/@\C') l@""""i) .
MEGIC CIT Chicago
o % @ 1893
Tesla and
Westinghouse
(AC) beat
Edison (DC).

George Nikola Thomas
Westinghouse Tesla Edison
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High Voltage DC power lines

DC recently making a comeback.

New efficient systems for converting between
DC and AC.

Especially good for long distances with
renewable sources such as solar and wind.

Easier because power grids don’t need to be
synchronized with each other.

More efficient transmission (no radiation)
Narrower rights-of-way (no radiation)
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Summary of AC

Introduces 2 new linear components: inductor
and capacitor, that perform integration and
differentiation of voltage and current.

AC signals are composed of sinusoids, which
are formed from pairs of phasors.

Linear differential equations can be solved by
algebra using complex impedance.

Frequency response of a system H(w) relates
spectra of output signal to input signal.

Linear systems change only amplitude and
phase, but never frequency.
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