
Alternating Current (AC) Circuits

• We have been talking about DC circuits
– Constant currents and voltages

– Resistors

– Linear equations

• Now we introduce AC circuits
– Time-varying currents and voltages

– Resistors, capacitors, inductors (coils)

– Linear differential equations
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Recall water analogy for Ohm’s law…

(a) Battery
(b) Resistor



78

Now we add a steel tank with rubber sheet

(a) Battery
(b) Resistor 
(c) Capacitor
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• Water enters one side of  the tank and leaves the 
other, distending but not crossing the sheet.

• At first, water seems to flow through tank, but then 
pressure builds up pushing against the flow.

• How to decrease capacitance of  tank?
Make rubber sheet (a) smaller or (b) thicker.
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Charge, like water is practically incompressible,

but within a small volume (closely spaced plates)
charge can enter one side and leave the other,

without flowing across the space between.
The apparent flow of  
current through space 
between the plates (the 
“displacement current”) led 
Maxwell to discard the 
“ether” and derive equations 
governing EM waves.  



Basic Laws of  Capacitance
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• Capacitance C relates charge Q to voltage V

• Since                   ,

• Capacitance has units of  Farads, F = 1 A sec / V

C = Q
V

Q = I dt∫
V = 1

C
I dt∫

I = C dV
dt

+
_



Charging a Capacitor with Battery VB

• Differential Equation yields exponential
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I t( ) = VB −VC t( )
R

• Voltage across resistor to find current

• Basic law of  capacitor

VC t( )+ RC dVC t( )
dt

=VB

I t( ) = C dVC t( )
dt

VC t( ) =VB 1− e
− t
RC

⎛
⎝⎜

⎞
⎠⎟

diminishing returns 
as cap becomes 
charged 



What determines capacitance C ?

• Area A of  the plates

• Distance d  between the plates

• Permittivity ε of  the dielectric between plates.
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C = ε A
d

Alignment of  dipoles within dielectric between plates
increases capacitor’s ability to store charge (capacitance).

Permittivity of a vacuum ε0 ≈ 8.8541 × 10#$%F ' m#$.



Types of  Capacitors
• Disk (Ceramic) Capacitor
– Non-polarized

– Low leakage

– High breakdown voltage

– ~ 5pF – 0.1μF

• Electrolytic Capacitor
– High leakage

– Polarized

– Low breakdown voltage

– ~ 0.1μF – 10,000μF

• Supercapacitor (Electrochemical Double Layer)
– New.  Effective spacing between plates in nanometers.

– Many Farads!  May power cars someday.
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• 3 digits “ABC” = (AB plus C zeros)

– “682” = 6800 pF

– “104” = 100,000 pF = 0.1μF



Inductor (coil)

• Water Analogy
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inductance is like 
inertia/momentum
of water in pipe with
flywheel. 

heavier flywheel 
(coil wrapped around iron core) 
adds to inertia/momentum.



Joseph Henry
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• Invented insulation
• Permitted construction 

of  much more powerful 
electromagnets.

• Derived mathematics for 
“self-inductance”

• Built early relays, used to 
give telegraph range

• Put Princeton Physics on 
the map

1797 – 1878



Basic Laws of  Inductance
• Inductance L relates changes in the current to 

voltages induced by changes in the magnetic 
field produced by the current.

• Inductance has units of  Henries, H = 1 V sec / A.
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I = 1
L

V dt∫
V = L dI

dt



What determines inductance L ?

• Assume a solenoid (coil)

• Area A of  the coil

• Number of  turns N  

• Length     of  the coil

• Permeability μ of  the core
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L = µ N
2A




Permeability of a vacuum μ0 ≈ 1.2566×10#$H & m#(.



Energy Stored in Capacitor
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I = C dV
dt

P =VI =VC dV
dt

E = Pdt∫
E = C V dV∫
E = 1

2
CV 2



Energy Stored in Caps and Coils

• Capacitors store “potential” energy in electric field

• Inductors store “kinetic” energy in magnetic field

• Resistors don’t store energy at all!
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independent of  history 

independent of  history 

the energy is dissipated as heat = V × I

" = 1
2&'

(

" = 1
2 )*

(



Generating Sparks
• What if  you suddenly try to stop a current?

• Nothing changes instantly in Nature. 
• Spark coil used in early radio (Titanic).
• Tesla patented the spark plug.
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V = L dI
dt

goes to - ∞ when 
switch is opened.

use diode to shunt 
current, protect switch.



Symmetry of  Electromagnetism
(from an electronics component point of  view)

• Only difference is no magnetic monopole.
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I = 1
L

V dt∫V = L dI
dt

I = C dV
dt

V = 1
C

I dt∫



Inductance adds like Resistance
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Series

Parallel

!" = !$ + !&

!' =
1

⁄1 !$ + ⁄1 !&
!' =

!$!&
!$ + !&



Capacitance adds like Conductance
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Series

Parallel

!" =
1

⁄1 !& + ⁄1 !(

!" =
!&!(
!& + !(

!) = !& + !(



• To find the charge in capacitors in parallel
o Find total effective capacitance CTotal

o Charge will be QTotal = CTotalV
o Same voltage will be on all caps (Kirchoff ’s Voltage Law)

o QTotal distributed proportional to capacitance

Distribution of  charge and voltage on multiple capacitors
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Q1 =VC1
Q2 =VC2

QTotal =VCTotal =Q1 +Q2

V =V1 =V2



• To find the voltages V1 and V2 on capacitors in series

– Find total effective capacitance !"#$%&
– Charge will be follow the rule for capacitance:

'"#$%& = !"#$%&)
– Same charge on both caps (Kirchhoff ’s Current Law)

'"#$%& = '* = '+

– Voltage distributed inversely proportional to capacitance

Distribution of  charge and voltage on multiple capacitors
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V1 =
Q1
C1

= QTotal

C1
= CTotal

C1
V

V2 =
Q2

C2
= QTotal

C2
= CTotal

C2
V

V1 is what 
portion 

of  V?

(CTotal<C1)



What is Magnetism?

• Lorenz Contraction 
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 = 0 1− v
2 c2

Length of  object 
observed in relative 
motion to the object is 
shorter than the 
object’s length      in its 
own rest frame  as 
velocity v approaches 
speed of  light c.



0

Thus electrons in Wire 1 
see Wire 2 as negatively 
charged and repel it: 
Magnetism!



AC circuit analysis uses Sinusoids
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Superposition of  Sinusoids

• Adding two sinusoids of  the same frequency, 
no matter what their amplitudes and phases, 
yields a sinusoid of  the same frequency.

• Why?  Trigonometry does not have an answer.

• Linear systems change only phase and 
amplitude

• New frequencies do not appear.



Sinusoids with amplitude of  1 are projections 
of  a unit vector spinning around the origin.
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Derivative shifts 90° to the left

101

Taking a second derivative inverts a sinusoid.



Hooke’s Law
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Sinusoids result when a 
function is proportional 

to its own negative 
second derivative.

constant

Pervasive in nature: swings, flutes, guitar strings, 
electron orbits, light waves, sound waves…     

! = #$
! = −&' ⇒ ' = − )

* $
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acceleration 
is negative of  
displacement

velocity
is perpendicular 
to displacement

Orbit of  the Moon – Hook’s Law in 2D 



Complex numbers

• Cartesian and Polar forms on complex plane.

• Not vectors, though they add like vectors.

• Can multiply two together (not so with vectors).
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Complex Numbers

• How to find r

105
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“Phasor” - Polar form of  Complex Number 
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Cartesian and Polar forms (cont…) 



Complex Conjugates
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Multiplying two complex numbers 
rotates by each other’s phase               

and scales by each other’s magnitude.
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Dividing two complex numbers
rotates the phase backwards and scales 

as the quotient of  the magnitudes.
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How to simplify a complex number 
in the denominator

real part imaginary part

rotate 
backwards
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y itself  is real:
the coordinate on 
the imaginary axis

The “squiggly” 
bracket: not an 
algebraic expression.



Examples
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Rotating any complex number by + or - 90°
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2π, not π, 
is the magic number



Now make the 
phasor spin at

Note: frequency 
can be negative; 
phasor can spin 

backwards.
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ω = 2π f
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Multiplying by j shifts the phase by 90°

j = e
jπ
2

θ = 90°

Just like a sinusoid: shifts 90° with each derivative. 

solution to
Hooke’s Law



• All algebraic operations work with complex numbers
• What does it mean to raise something to an imaginary power?
• Consider case of  !"#$ with % = 1
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Euler’s Identity
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Consider         graphically.

Its derivative

is rotated by 90° and scaled by       at all times.
Thus it spins in a circle with velocity      , 
and  since                 when  t = 0,

e jωt

de jωt

dt
= jωe jωt

re

im

e jωt

jωe jωt

ω

e jωt = cosωt + j sinωt

e jωt =1

Euler’s Identity

ω



Voltages and Currents are Real
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Cosine is sum of  2 phasors
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Sine is difference between 2 phasors
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Trigonometry Revealed
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Why have we learned the math of  phasors?

• We will now see how resistance is just the real 
part of  a complex parameter, impedance.

• Resistors have real impedance. Capacitors and 
inductors have imaginary impedance.

• All the laws we have learned in DC for 
resistance apply in AC for impedance.

• Thus we can solve complicated differential 
equations using algebra (of  complex numbers).

• To derive impedance, we consider the function 
!"#$ as the orthogonal basis set from which any 
voltage or current can be built (Fourier).
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Complex Impedance - Capacitor

129

represents
orthogonal
basis set



Complex Impedance - Inductor
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Complex Impedance - Resistor

131



Impedance on the Complex Plane
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Taxonomy of  Impedance

133
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Z = 1
jωC1

+ 1
jωC2

= C1 +C2
jωC1C2

= 1

jω 1
1
C1

+ 1
C2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Z = jωL1 + jωL2 = jω L1 + L2( )

Series Capacitors and Inductors

Two capacitors in series:

Two inductors in series:



Parallel Capacitors and Inductors
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Z = 1
jωC1 + jωC2

= 1
jω C1 +C2( )

Z = 1
1
jωL1

+ 1
jωL2

= jω 1
1
L1

+ 1
L2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Two capacitors in parallel:

Two inductors in parallel:
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Same rules as DC circuits

Now using AC voltage and current sources 
and complex impedance Z

AC sources

V (t)

I (t)



Impedance of  a Passive Branch – RC circuit
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LC circuit - Resonance
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Analogous to spring 
and weight system –
Energy in passed 
between magnetic 
and electric fields,   
as in electromagnetic 
wave.

At resonance,
impedances 
add to zero 
and cancel.



Adding R to LC damps the ringing
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Like dragging 
your feet on the 
swing. Energy 
being passed 
from magnetic 
to electric field 
eventually 
dissipated by 
resistor as heat.



“Tank” Circuit
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around loop
^

permiability
and

permitivity
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• How can impedance be infinite through the parallel LC circuit 
when each of  the components can pass current?

• At the resonant frequency the currents trying to pass from the 
antenna to ground are shifted 90° in opposite directions and 
thus are 180° out of  phase and cancel. No net current!

• This “null point” is an example of  destructive interference, 
how lenses work with light (described by phasors 3D space).

current is now
through loop
rather than 
around it



Phasor Notation

• In BioE 1310, complex exponentials may be 
described with shorthand “phasor notation”

• Unfortunately, this abbreviation is widely used to 
represent real voltages and currents, with no 
consensus as to whether it means sin or cos, peak 
or root mean squared (RMS).  Thus, !∠# may 
mean (among other things)
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re jθ ⇒ "r∠θ "

v t( ) = A
2
sin ωt +θ( )

v t( ) = Acos ωt +θ( )
or



Phasor Notation Ambiguity (cont…)

• This ambiguity is allowed to continue because linear 
systems change only magnitude and phase.

• Thus a given network of  coils, capacitors, and 
resistors will cause the same relative change in
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A∠θ

v t( ) = A
2
sin ωt +θ( )

v t( ) = Acos ωt +θ( )
as it does in

so it doesn’t matter which definition of            is used 
for real signals, so long as it remains consistent. 

http://www.vialab.org/Bioe_1310/pdf/PhasorNotationManifesto.pdf



Sample Problems with Phasor Notation

Using our unambiguous definition of  phasor notation, 

Express the following as a complex number in Cartesian form 
(x + jy):

• In other words, for multiplication, multiply the magnitudes 
and add the phases.  

• For division, divide the magnitudes and subtract the phases.
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4∠45°( ) 6∠45°( ) = 24∠90° = 0 + 24 j

r∠θ = re jθ

6∠30°
3∠90°

= 2∠− 60° =1− j 3



Another look at Superposition
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Asin ωt( )+ Bcos ωt( )
combine to form a sinusoid with frequency    ,

and how any sum of  sinusoids with frequency

ω

Ai cos ωt +θi( )
i
∑
amplitude    frequency   phase 

any sinusoid of  frequency ω

is a sinusoid with frequency     ω

ω



Example:   cos(t) + sin(t),    ! = 1

cos t( )

sin t( )

cos t( )+ sin t( ) =

             2 cos t − π
4

⎛
⎝⎜

⎞
⎠⎟

146… is sinusoid of  same frequency.



147

• Two phasors of  the same frequency and direction sum to a 
third phasor of  the same frequency and direction.

• They form a rigid spinning body.

Single phasor y(t) Sum of  two phasors y(t) = y1(t) + y2(t) 
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cos t( ) = e
jt + e− jt

2

Recall complex conjugate pairs of  phasors

e jt

2

e− jt

2

e jt

2 j

e− jt

2 j

positive (solid) and negative (dashed) frequency.

(recall             )1
j
= − j

sin t( ) = e
jt − e− jt

2 j

_



…creates single conjugate pair (gray).

sin t( )

cos t( )+ sin t( ) = 2 cos t − π
4

⎛
⎝⎜

⎞
⎠⎟

149

cos t( )

Adding cos and sin conjugate pairs (black)…

hypotenuse
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Inverse Fourier Series

Fourier coefficient: stationary phasors 
(complex numbers) for each harmonic n

determines magnitude and phase
of that particular harmonic.

x t( ) = ane
jnω0t

n=−∞

+∞

∑

harmonic
number

fundamental
frequency !"

Fourier Series 
Applies only to periodic signals

Any periodic signal x (t) 
consists of  a series of  
sinusoidal harmonics of  a 
fundamental frequency !".

For real x(t), the phasor at 
each # > 0, spinning at 
#!" is paired with a 
complex conjugate phasor 
at −#, spinning in the other 
direction at −#!" .

The “DC” harmonic, at  
# = 0, has a constant value 
of  (".
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The nth harmonic can also be written as a 
weighted sum of  sin and cos at frequency !"#.

The zero harmonic n = 0 (DC)
is a cosine of  zero frequency

An cos(0t) 

creating a single sinusoid whose phase and amplitude 
are determined by real coefficients $% and &%.

$% cos !"#* + &% sin !"#*
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Building a square wave by 
adding the odd harmonics: 
1, 3, 5, 7… 

An infinite number of  
harmonics are needed for a 
theoretical square wave.  

The harmonics account for 
the harsher tone of  the 
square wave (buzzer), 
compared to just the 
fundamental 1rst harmonic 
sinusoid (flute).
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backwards-spinning 
phasor.

an =
1
T0

x t( )e− jnω0t dt
T0
∫

stationary
phasor for 
harmonic
number n

fundamental
frequency

Fourier Series: How to find coefficient an

Periodic signal x (t) 
consists of  phasors
forming the sinusoidal 
harmonics of       .  

Backward-spinning 
phasor spins 
the entire set of  phasors
in x(t), making the 
particular phasor
stand still.

All other phasors 
complete n revolutions, 
integrating to 0.

ω 0

e− jnω0t

e jnω0t

period T0 =
2π
ω0

Fourier Series

Inverse Fourier Series

x t( ) = ane
jnω0t

n=−∞

+∞

∑
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Inverse Fourier Transform

x t( ) = 1
2π

X ω( )e jωt dω
−∞

+∞

∫

Fourier Transform
Applies to any finite signal (not just periodic)

Fourier coefficient an
has now become a 
continues function 
of  frequency, X(ω), 
with phasors possible 
at every frequency.

X(ω) is a stationary 
phasor for any 
particular ω that 
determines the 
magnitude and phase 
of  the corresponding 
phasor in x(t).e jωt

Fourier Transform

X ω( ) = x t( )e− jωt dt
−∞

+∞

∫
As before, backwards-spinning phasor makes 
corresponding component of x(t) stand still.
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The complex exponential !"#$ forms
an orthogonal basis set for any signal.

Each phasor passes through a linear system without 
affecting the system’s response to any other.

To understand a linear system, all we need to know is 
what it does to !"#$ for all values of  %.          

This is the linear system’s frequency response.

A linear system can only change the phase and 
amplitude of  a given phasor, not its frequency, by 
multiplying it by a stationary phasor H(ω), the 
frequency response of  the system.



Frequency component ! " #$%&
The inverse Fourier Transform builds x (t) from 
phasors at every frequency.

… stationary phasor ! " scales the magnitude and 
rotates the phase of  unit spinning phasor #$%&.
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x t( ) = 1
2π

X ω( )e jωt dω
−∞

+∞

∫



Systems modeled as Filters
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• We describe input and output signals as spectra  ! "
and # " , the amplitude and phase of  $%&' at ".

• System’s transfer function ( " changes the magnitude 
and phase of  ! " to yield Y " by multiplication.

• ( " is just another stationary phasor representing 
the amplitude gain and phase shift of  the system.

( " =
) &
* &

# " = ( " ! "



Systems modeled as Filters
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• Consider system with voltage divider of  complex impedances.

• Same rule applies as with resistor voltage divider.
• Impedance divider changes the amplitude and phase of  ! " #$%&.

H ω( ) = Z1
Z1 + Z2

( " =
) %
* %
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H ω( ) = R

R + 1
jωC

= jωRC
1+ jωRC

H ω( ) ≅1,   ω >> 1
RC

H ω( ) ≅ jωRC,   ω << 1
RC

At high frequencies, acts like a 
piece of  wire.

At low frequencies, attenuates 
and differentiates.

Example: RC High-Pass Filter

Key frequency is reciprocal of  time constant RC.

! " =
# $
% $
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H ω( ) = R
R + jωL

= 1

1+ jω L
R

H ω( ) ≅1,   ω << R
L

H ω( ) ≅ R
jωL

,   ω >> R
L

At low frequencies, acts like a 
piece of  wire.

At high frequencies, 
attenuates and integrates.

Example: LR Low-Pass Filter

Key frequency is reciprocal of  time constant L/R.

! " =
# $
% $
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H ω( ) =
1
jωC

R + 1
jωC

= 1
1+ jωRC

H ω( ) ≅1,   ω << 1
RC

H ω( ) ≅ 1
jωRC

,   ω >> 1
RC

At low frequencies, acts like a 
piece of  wire. 
(assuming no current at output)

At high frequencies, 
attenuates and integrates.

Example: RC Low-Pass Filter

Key frequency is reciprocal of  time constant RC.

! " =
# $
% $



Decibels – ratio of  gain (attenuation) 
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Alexander 
Graham Bell

• 1 Bell = 10 dB = order of  magnitude in power

so if  Pin = 1 W and   Pout = 100 W    è 20 dB

• Since 

so if  Vin = 1 V and  Vout = 10 V    è 20 dB

• dB is a  pure ratio (no units) as opposed to dBm (power 
compared to 1 mW), dBV (voltage compared to 1 V), dBSPL

(sound pressure level compared to threshold of  hearing), etc.    

1 dB ≡10 log10
Pout
Pin

⎛
⎝⎜

⎞
⎠⎟

1 dB ≡ 20 log10
Vout
Vin

⎛
⎝⎜

⎞
⎠⎟

power ∝  voltage2



Magnitude and Phase of  Low-Pass Filter
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At corner (or “cut-off ”) frequency, ωC = 1/RC ,

H ω( ) = 1− j
2

= 1
2

H ω( ) ≅ −3dB

Magnitude (Gain/Attenuation)

Recall low-pass filter:

Phase

∠H ω( ) = arctan
− 12
1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∠H ω( ) = −45°

H ω( ) = 1
1+ j

⋅1− j
1− j

= 1− j
2

! " =
#

#$%&'(



“Bode” Plot of  Low Pass Filter (previous slide)

164http://www.electronics-tutorials.ws/filter/filter_2.html

H ω( )

Simply a log/log 
plot of  

and

∠H ω( )
(this one vs. f , not ω)



Magnitude and Phase of  High-Pass Filter
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At cut-off  frequency, ωC = 1/RC ,

H ω( ) = 1+ j
2

= 1
2

H ω( ) ≅ −3dB

Magnitude

Recall high-pass filter:

Phase

∠H ω( ) = arctan
1
2
1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∠H ω( ) = 45°

H ω( ) = j
1+ j

⋅1− j
1− j

= 1+ j
2

! " =
#$%&
'(#$%&



“Bode” Plot of  High Pass Filter (previous slide)

166http://www.electronics-tutorials.ws/filter/filter_2.html

H ω( )

Simply a log/log 
plot of  

and

∠H ω( )
(this one vs. f , not ω)



Values for AC Voltage

• Any sinusoidal signal V(t) has all three values.

• Since sin2 + cos2 = 1, and since sin2 and cos2 must each have the 
same mean value, each must have a mean value of  ½.

• Or put another way:  

• Therefore, for a sinusoid
167

VRMS =
VP
2

“Peak” VP

or 
“Max” VM

“Peak-to Peak”
VPP

“Root Mean Square”
VRMS

cos2 ωt( ) = 1+ cos 2ωt( )
2 mean = ½



RMS used to compute AC Power in Resistor

When V and I are in-phase 
(resistor), average power is 
defined as in DC.

Energy is not stored in the 
resistor, but simply dissipated 
as heat.

Power in a resistor may be 
computed from VP or IP for 
sinusoids, or from VRMS or 
IRMS for any signal.                                                   
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P =VRMS × IRMS =
VRMS( )2
R

= IRMS( )2 R

because

VRMS =
VP
2

P = 1
2
VP × IP =

1
2
VP( )2
R

= 1
2
IP( )2 R

For any signal in a resistor:

For sinusoids:

IRMS =
IP
2

and



AC Power in Capacitor or Inductor

Since VRMS and IRMS are 90° out-
of-phase in capacitor or inductor, 
the power dissipated is 0.

cos $% sin $% = sin 2$%
2

sin and cos have zero correlation:
The integral of  their product = 0

Thus no heat is dissipated, all 
stored energy returned to circuit

169
sin and cos have 0 correlation

average = 0



Transformer

• Allows voltage (AC) to be changed: !"= 
#
$ !%

• Extremely efficient at preserving power: !%&% ≅ !"&"
• Voltages and currents in RMS assumed to be sinusoids
• Can be step-up transformers (N>M) or step-down (N<M)

• Permits efficient high-voltage power transmission, with 
small current: thus little I 2R energy wasted in long wires.

• Transformers also used to provide isolation for safety.
170

iron core
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George
Westinghouse

Nikola 
Tesla

World’s Fair
Chicago
1893
Tesla and 
Westinghouse 
(AC) beat 
Edison (DC).

Thomas
Edison
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High Voltage DC power lines

• DC recently making a comeback.

• New efficient systems for converting between 
DC and AC.

• Especially good for long distances with 
renewable sources such as solar and wind.

• Easier because power grids don’t need to be 
synchronized with each other.

• More efficient transmission (no radiation) 

• Narrower rights-of-way (no radiation)
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Summary of  AC
• Introduces 2 new linear components: inductor 

and capacitor, that perform integration and 
differentiation of  voltage and current.

• AC signals are composed of  sinusoids, which 
are formed from pairs of  phasors.

• Linear differential equations can be solved by 
algebra using complex impedance.

• Frequency response of  a system H(!) relates 
spectra of  output signal to input signal.

• Linear systems change only amplitude and 
phase, but never frequency.
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