Homework 2 – For your own education, not to be handed in.

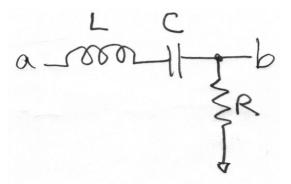
1. Answer the following questions about a theoretically perfect 4 H inductor.

A. If 0 V is applied for all t < 0, and 0 A is passing through it at t = 0, and then 2 V is applied across it from time t = 0 seconds to t = 4 seconds, calculate the current at t = 4 seconds.

B. What is the energy stored in the coil in question A at t = 4 seconds?

C. If a voltage $Asin(2\pi ft)$ is applied from $-\infty \le t \le +\infty$, f = 100 Hz, A = 4 V, derive a function for the current through the inductor.

- **D.** What is the power *dissipated* by the inductor in question C? (note italics).
- **E.** What voltage across the coil would theoretically be required to change the current through the coil at t = 0 from 0 A to 1 A, *instantaneously*?
- 2. Convert the following expressions to cartesian coordinates z = x + jy. Sketch the complex number as an arrow on the complex plane, indicating numerical values on the real and imaginary axes, angle, and radius.


A. $4e^{-j\frac{\pi}{4}}$ **B.** $e^{ln2+j\frac{\pi}{2}}$ **C.** $3e^{j\frac{11\pi}{4}}$ **D.** $\left(e^{j\frac{\pi}{2}}\right)^3$

3. Convert the following expressions to complex exponentials, in the form $re^{j\theta}$, where $r \ge 0$ and $-\pi < \theta \le \pi$. Sketch the complex number as an arrow on the complex plane, indicating numerical values on the real and imaginary axes, angle, and radius

A. $\sqrt{3} - j$

- **B.** -2 + 2j
- C. $(1-j)^3$ (hint: it's easier if you first convert 1-j to a complex exponential and cube it, but you can do it both ways just to be sure).
- **D.** 2ej
- 4. Given the trigonometric identity $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$

- **A**. Rewrite the trigonometric identity, converting the trigonometric functions into their complex exponential equivalents.
- **B.** Show that the equation you have written in question A is, in fact, true.
- 5. Given the trigonometric identity $\sin 2\theta = 2\sin\theta \cos\theta$
 - **A**. Rewrite the trigonometric identity, converting the trigonometric functions into their complex exponential equivalents.
 - **B.** Show that the equation you have written in question A is, in fact, true.
- 6. Given the following circuit,

- A. Derive an equation for the total impedance Z_{ab} between points *a* and *b*, as a function of frequency ω .
- **B.** What is Z_{ab} when $\omega = 0$? (include units)
- C. What is Z_{ab} when $\omega = \infty$? (include units)
- **D.** At what frequency ω_0 (in radians/second) does $Z_{ab} = 0$ ohms? (show your justification) What frequency f_0 in Hz does this correspond to?
- **E.** Derive an equation for the transfer function $H(\omega)$ for the system whose input is at point *a* and output is at point *b*.
- **F.** What will $H(\omega)$ be for $\omega = \omega_0$ from question D? Show your derivation.
- **G.** If $cos(\omega_0 t)$ is presented at point *a*, what signal would you expect at point *b*? (Hint: Given your answer from question F, this should be trivial.)