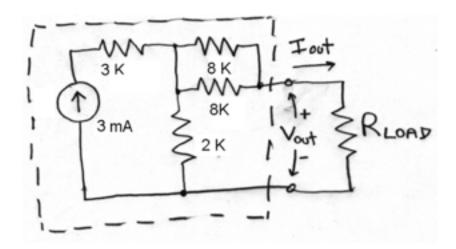
BioE 1310 Page 1 of 3

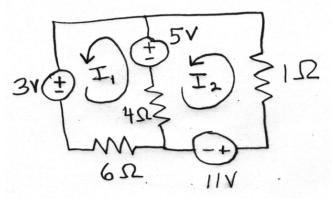

Homework 1 - Answers

$$BR = \frac{24V}{2A} = 12 \Omega C I^2R = 48 W$$

BioE 1310 Page 2 of 3

3.

A.



- **B**. Since R_1 is the only component in series with a current source, all of that current must pass through it by Kirchhoff's Current Law, that is, 3 mA.
- **C.** R_{LOAD} should be set to 0Ω .
- **D.** R_2 in parallel with R_3 is 4 K Ω , which with R_4 form a current divider in which 1/3 of the current will constitute I_{OUT} . Therefore, $I_{\text{NORTON}} = 1$ mA.
- **E.** R_{LOAD} should be set to ∞ Ω.
- **F.** Since $R_{\text{LOAD}} = \infty \Omega$, no current will pass through R_2 or R_3 , meaning there will be no voltage drop across them. All of I will pass through R_4 , so $V_{\text{OUT}} = V_{\text{THEVENIN}} = 3 \text{ mA} \times 2 \text{ K}\Omega = 6 \text{ V}.$
- **G.** $R_{\text{THEVENIN}} = R_{\text{NORTON}} = V_{\text{THEVENIN}} / I_{\text{NORTON}} = 6 \text{ V} / 1 \text{ mA} = 6 \text{ K}\Omega.$
- **H.** Since I = 0, no current will pass through R_1 . Thus $R_{\text{THEVENIN}} = R_{\text{NORTON}}$ is R_2 in parallel with R_3 (4 KΩ) in series with R_4 (2 KΩ), or 6 KΩ.

BioE 1310

4.

A.

B.

$$10I_1 - 4I_2 = 2$$

-4 $I_1 + 5I_2 = 6$

C.
$$I_1 = 1$$
 A and $I_2 = 2$ A.

D.
$$10(1) - 4(2) = 2$$

 $-4(1) + 5(2) = 6$