Homework 1 - For your own education, not to be handed in.

1. An electric heater is powered by a 24V battery. The heater draws 2A. (Assume the battery is a perfect voltage source and the heater is a resistor)

A. Draw the circuit labeling the values of the resistor and perfect voltage source. Make sure that the circuit is complete.

- **B**. What is the resistance of the heater?
- **C.** What is the power dissipated by the heater?
- **D.** Is the current through the heater the same direction as the voltage across it?
- E. Is the current through the battery the same direction as the voltage across it?
- **F.** What is the power (in watts) "dissipated" by the battery? (Recall that power can be positive or negative.)
- G. How much energy (in Joules) dissipated by the heater in one minute?
- 2. In the following circuit, voltages are defined relative to ground.

- A. Redraw the circuit.
- **B.** What is V_1 ?
- C. What is V₂? (show calculations)
- **D.** What is V_3 ?
- E. What is I?
- **3.** In the following circuit, I = 3 mA, $R_1 = 3 \text{ K}\Omega$, $R_2 = R_3 = 8 \text{ K}\Omega$, $R_4 = 2 \text{ K}\Omega$,

- A. Redraw the circuit with the above values shown for each component.
- **B.** What is the current through R_1 (explain using one of Kirchhoff's Laws)?
- **C.** To find the Norton Equivalent current, I_{NORTON} , of the circuit within the dashedline box, what value should be assigned to R_{LOAD} ?
- **D.** What is $I_{OUT} = I_{NORTON}$ computed as the current through R_{LOAD} assigned the resistance value in question C? (show your calculations)
- **E.** To find the Thevenin Equivalent voltage, V_{THEVENIN} , of the circuit within the dashed-line box, what value should be assigned to R_{LOAD} ?
- **F.** What is $V_{\text{OUT}} = V_{\text{THEVENIN}}$ computed as the voltage across R_{LOAD} assigned the resistance value in question E? (show your calculations).
- **G.** What is $R_{\text{THEVENIN}} = R_{\text{NORTON}}$ (they are always the same value), as calculated from your values computed for V_{THEVENIN} and I_{NORTON} ? (show calculation).
- **H.** Using Superposition, find $R_{\text{THEVENIN}} = R_{\text{NORTON}}$ by setting I = 0 and computing the resistance of the resulting circuit "looking into" the dashed-line box (show calculations). This value should match your answer to question G.

4. The following circuit has two unknowns, I_1 and I_2 , which may be determined using Mesh Analysis.

- A. Draw the circuit.
- B. Using Kirchhoff's Voltage Law, write two simultaneous equations of the form

$$\begin{aligned} aI_1 + bI_2 &= c \\ dI_1 + eI_2 &= f \end{aligned}$$

determining values for *a*, *b*, *c*, *d*, *e*, and *f*. (Note: this requires careful consideration of the directions of the voltage sources and the voltages created by I_1 and I_2 in the various resistors).

- C. Solve the equations in question B for I_1 and I_2 (hint: for this particular circuit, these turn out to be integer values).
- **D.** Plug the values of I_1 and I_2 from question C into the equations from question B and show they are solved (and thus, that Kirchhoff's Voltage Law has been obeyed).